Page 1 of 1
JAN

2014

04

Arduino — Controlling a WS2812 LED strand with
NeoPixel or FastLED

Arduino

o
[©]

96

The main reason why I bought my first Arduino board was to be able to play with LED strips
with applications like BobLight and LightPack that offer colored backlighting to your TV
comparable to what Philips offers with it’s beautiful AmbiLight TV’s.

I like really Philips, and I like Ambilight, so why not buy a Philips AmbiLight TV?
Well, pretty simple ... first of all Philips does not carry 80” AmbiLight enabled TV’s, smaller

models are significantly more expensive than non-AmbiLight models, and it appears that
these AmbiLight TV’s are hard to find in the US.

In this article we will be using an Arduino Uno connected to a strip of WS2812/WS2811
LEDs.

30

Difference between WS2801, WS2811 and WS2812

Before we start, we should probably identify the differences between the WS2801, WS2811
and WS2812 based strips (also called “strands™).

Most projects and descriptions out there discus these sometimes mixed, and for one who dives
into LED strips for the first time, these models numbers might be confusing.



The model numbers WS2801, WS2811 and WS2812 actually refer to different “things”.

The WS2801 and WS2811 are LED driver IC’s (Integrated Circuits).

These IC’s can control up to 3 LEDs, typically Red, Green and Blue. Positioned close
together, so you as a viewer will see the mixed color result.

The WS2801 used to be quite popular but the WS2812/WS2811 appears to be taking over the
reigns.

The WS2812 however is a WS2811 placed inside a 5050 LED package.

The 5050 LED is a very common 3 LED (Red, Green, Blue) package, in one Smm x Smm
case.

A WS2812 is the same package but with an additional WS2811 LED driver IC on board.

In the illustration below you’ll see the difference:

On the left a 5050 RGB LED, on the right a WS2812 which combines a 5050 RGB LED with
a WS2811 controller.

Note how the layout of the “silver” tracks are almost identical in both images, yet the black
(IC) block and the tiny wires are different (right).

5050 RGB LED (left) and WS2812 (right)

Where the WS2801 strips needed 4 wires, the WS2811/WS2812 strips only needs 3 wires.
The WS2801 uses a separate clock line, which can be seen as an advantage, whereas the
WS2811/WS2812 does not. The WS2811/WS2812 depends on sending data matching a very
tight timing. The advantage of the WS2812 though, is that production of these combo’s in
strips is easier and therefor cheaper, and each RGB LED takes much less space on strips.

Your selection here depends on what type of microcontroller you’ll be using and which of
these are supported by the application or library you intend to use.

For example, Arduino based projects work fine with any of these, since everything runs real-
time.

When using a Raspberry Pi however, using a WS2811/WS2812 can be a little bit more
challenging due to the strict timing needs. A Raspberry Pi typically runs Linux, which is not a
so-called Real-time Operating System, where intended timing might be disrupted by other
background activities.

In my little Arduino project I’ll be using the WS2812.



Specifications

I have made the spec sheets of the 5050 LED, WS2801, WS2811 and WS2812 available as
PDF:

— WS2801 Spec Sheet
— WS2811 Spec Sheet
— WS2812 Spec Sheet
— 5050 LED Spec Sheet

These spec sheets can also be downloaded with all 4 PDF’s bundled in a single ZIP file:

DOWNLOAD - LED Specification Sheets

Filename: LED Specification_sheets.zip
Size: 1.1 MiB
Date: January 3, 2014

‘Download Now_

LED strips Differences

Now that we know the difference between the model numbers, let’s look at a few examples of
LED strips.

There are 2 major types of LED strips that support multiple colors: Analog strips and Digital
strips.
For our project we want DIGITAL RGB LED stripS ... not the analog ones.

ANALOG LED STRIPS

These are NOT the kind of LED strips we use in this project!

In the illustration below we see first (top) a strip of single color LED’s — typically white, but
can be purchased in different colors. The one below that is a multicolor strip (RGB pins are a
give away) which allows us to set the color for the entire strip.

On each of these strips you’ll see (from left to right) first the LED as a white block, followed

by an SMD resistor as a tiny back block.
The examples below require 12V to operate.



; \.' o2s H{ 1 026 [ 027, j |

I iy P
g G | W

[z]
! 8
= : | l—"l & Ty

Analog LED strips — Single color (top), Multicolor (bottom)

DIGITAL RGB LED strips

The digital strips are the ones we will use in this project.
In particular: we will use the WS2812 in our project.

The cool part of a digital strip is that you address each LED individually, making very cool
effects easy. Obviously the kind we’d like to use in our projects.

In the illustration below you can see the physical differences between the WS2801 and the
WS2811/WS2812 strips.
Unlike the analog strips: Most Digital RGB strips operate on 5 Volts!

Note:

e Not all strips of the same “model”, look the same, but have typically a very similar
layout.

strips can be sold as a white or a black strip (background strip).

Notice the arrows indicating Data direction.

WS2801 has 4 pins, where as the WS2811/WS2812 only has 3 pins.

There are digital strips that look like WS2801/WS2811/WS2812 strip, that are NOT
based on any of these LED drivers.

e Strips can be had in waterproof (in plastic “tube”) or for indoor use only.



WS2801

| 10 LS

L] 7

.I @e [&a e

: o | & o o
: b . -

e ol o™ | i S~ an

Digital LED strip — WS2812 (top) and WS2801 (bottom)

WS2801 vs WS2812 pins
PIN WS2801 WS2812
5V Power (+5V) Power (+5V)
CI  Clock signal Input N/A
CO Clock signal Output N/A
DI  Data Input Data Input
DO Data Output Data Output
GND Ground or Common Ground or Common

Data Flow

As you can see in the images above:

A 5050 RGB LED + LED Driver IC combo makes a single “unit”.

For the WS2801 this is an IC and a 5050, for the WS2812 this is a single component holding
a 5050 LED and WS2811 combined.

These units are chained and each have an input side and an output side. The arrow printed
on the strip indicates the data flow direction.

Each output of the previous unit is connected to the input of the following unit, and that’s why
we see in the little table INPUT and OUTPUT designated pins.

It’s important to pay attention to the arrow, if you use your strip in the wrong “direction”, it
will not work.

Note : Simply connecting +5V and GND will at best flash up your strip for a fraction of a
second.
The LEDs need to be “told” to be ON, so without data feed your LEDs will remain OFF.

Time to order a WS2812 RGB LED Strip ...



Now that we know the basics and the things to look for, you should be able to order the right
strip. Keep in mind that often WS2812 strips are offered as WS2811 strips — different name,
same thing. Some sellers mention WS2801 in their product name or advertisement — please
make absolutely sure you’re getting the WS2811/WS2812.

Both Amazon and eBay are good resources, and some report positive results with Alibaba ...
I’ve never ordered from Alibaba, and your milage may vary.

One of my favorite places is AdaFruit, which is not just any random shop, as they provide
awesome information when it comes to Arduino projects and the likes.

Making the Arduino WS2812 connection

Now that we have a WS2812 strip, time to hook it up to our Arduino (I used an Arduino UNO
for this).

Power

Caution

A strip of LED’s will pull way too much power for your Arduino to handle, so always
consider an additional 5V power supply.

Rule of thumb is : each RGB LED unit pulls about 60 mA (3x 20 mA, for Red, Green and
Blue).

LED’s, even though they’re called power efficient, do need juice ... and for each WS2812 we
need up to 60 mA when the 3 LEDs inside are at maximum brightness at 5V.

Power Supply

You can use an external power supply for this purpose and even though my 1 meter strip
theoretically needs 3.6 A at max brightness, my little 2A power supply managed to handle it —
your milage may vary! (1 meter with 60 LEDs/meter = 60 * 60 mA = 3600 mA =3.6 A
max.)

A switching power supply is often ideal and pretty cheap — you might even have one or the
other laying around from your old cellphone, just make sure it’s actually giving you 5 — 6V
and not weird voltages like 12V or 16V or even more. Verification with a Voltage meter is
recommended.

Batteries

You can consider using batteries, although I’'m not a big fan of using them. With batteries
please pay attention to the voltage sum.

Consider:
— 3 x Alkaline AA batteries (4.5 V) or
—4 x NiMH AA rechargeable batteries (4.8 V)

About Amps and such



Like I mentioned before, each LED module takes a max of 60 mA, so you can calculate how
many Amps your power source has to provide. Keep in mind that 1000 mA =1 A.

Your power supply can have overcapacity when it comes to Amps, so if your project needs
3.6 A, and you only have a 10 A power supply, then this will work great.

Keep in mind though that the Voltage must be close to the 5V value. Higher voltages may
damage your LEDs.

Connecting Arduino and WS2812 strip
The basic layout of power can be done in 2 ways — with computer or without ...
Arduino Connected to your Computer

Commonly, during testing, your Arduino is connected to your computer via a USB cable
where the USB cable does not only program the microcontroller but will also provide power
for the Arduino.

The DIN (data input) pin of the LED strip goes to Arduino PIN 6 with an optional 470Q2
resistor in between.

+5V of the LED strip goes to the +5V of extra power supply.

GND of the LED strip goes to GND of the extra power supply and to the GND of the
Arduino.

The USB of the Arduino is connected to your computer.

COMPUTER
USB

V.12V DC




Arduino & WS2812 — USB and External Power
Arduino Not connected to your computer

Once you’ve completed your prototyping, you could still keep using your Arduino for
controlling the LED strip.

In that case you’d typically have the Arduino in a very different location, and thus not
connected to your computer. In that case the extra power supply for the LEDs could be used
to feed the Arduino as well.

The DIN (data input) pin of the LED strip goes to PIN 6 of the Arduino with an optional
470Q resistor in between.

+5V of the LED strip goes to the +5V of extra power supply and the +5V on your
Arduino.

GND of the LED strip goes to GND of the extra power supply and to the GND of the
Arduino.

V.12V DC

Arduino & WS2812 — Only running on external power supply

Programming the Arduino for WS2811/WS2812



Now that we know how to connect the strip to our Arduino, time to get some cool effects
going.

We could of course dig into all the timing details of the WS2811/WS2812 but there are
already very good libraries out there that do the difficult work for us.

The most used at this moment are FastLED (successor of FastSPI LED and FastSPI LED?2)
and NeoPixel (by AdaFruit). I've added some demo videos, and even though it might give
you the impression that NeoPixel could be slower, rest assure, it’s not.

Both Libraries are very good and very fast.

e AdaFruit NeoPixel
e FastLED (FastSPI_LED)

Note : If you haven’t already installed the regular Arduino software, please consider looking
at “My First Arduino Project” for details and downloads or download links.

AdaFruit NeoPixel
For no obvious reason, I started my first test with NeoPixel by AdaFruit.

The NeoPixel Library for Arduino can be downloaded from Github or through this direct link
(zip file) or from Tweaking4All. As usual | HIGHLY recommend getting the files directly
from the source as the version on Tweaking4All might be outdated and only serves as a
backup.

DOWNLOAD - Adafruit NeoPixel

Filename: Adafruit NeoPixel.zip
Size: 26.6 KiB
Date: January 3, 2014

‘Download Now_

If you downloaded the Tweaking4All ZIP file, then in the Arduino Software simple choose
“Sketch” “Import Library...” “Add Library...” and in the file dialog select the downloaded
ZIP file. This will automatically install the library for you (requires Arduino 1.0.5 or newer).

If you however downloaded the official version and this trick did give you an error message,
the copy then copy the files from the ZIP archive into a folder called “AdaFruit NeoPixel” in
your Arduino Library directory. More details can be found on the Arduino page concerning
Libraries.

e Windows: My Documents\Arduino\libraries\
e MacOS X: ~/Documents/Arduino/libraries/
e Linux: ~/Documents/Arduino/libraries/



After installing the Library, close and restart the Arduino software so that the examples are
not visible in the menu.

The first example I ran was of course striptest to see if my LED strips worked alright — choose
from the menu “File” “Examples” “AdaFruit NeoPixel” “striptest*.

Before compiling and uploading the sketch to your Arduino, first verify some basic settings in
the code.

—line 3 : make sure #define PIN 6 is actually matching the pin number you’ve used on your
Arduino

—line 12 : make sure the first parameter in Adafruit NeoPixel (60, ... matches the
number of LED’s in your strip (here: 60).

If you used the wiring schematics shown earlier then PIN 6 would be the right pin. Click the
“Upload” button, wait a few seconds and see the magic at work.

Here a short video of the NeoPixel demo — I didn’t do too much effort as you can see, but it
gives you an idea ....

00:00

00:34

1 #include <Adafruit NeoPixel.h>

2

3 #define PIN 6

4

5 // Parameter 1 = number of pixels in strip

6 // Parameter 2 = pin number (most are valid)

7 // Parameter 3 = pixel type flags, add together as needed:

8 // NEO _KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
9 //' NEO _KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)

10/ NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)

11// NEO RGB Pixels are wired for RGB bitstream (vl FLORA pixels, not v2)
12Adafruit NeoPixel strip = Adafruit NeoPixel(60, PIN, NEO GRB + NEO KHZ800);
13

14...

I highly recommend snooping through the code of this example, make some changes, see
what happens.
The full code can be found below.

Pay attention to these functions:

Istrip.begin(); // initialize strip
2strip.show(); // Update all LEDs (= turn OFF, since none of them have been set
3yet!)

4...



5¢ = strip.Color(255, 0, 0); // define the variable ¢ as RED (R,G,B)
6strip.setPixelColor(10, c); // set LED 10 to the color in variable ¢ (red)
strip.show(); // Update all LEDs (= make LED 10 red)

It’s worth playing with for a bit to get familiar with how things are being called.

Note : To switch a LED off use the color BLACK (strip.Color (0,0,0)).

O 01N DN B W~

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

#include <Adafruit NeoPixel.h>
#define PIN 6

// Parameter 1 = number of pixels in strip

// Parameter 2 = pin number (most are valid)

// Parameter 3 = pixel type flags, add together as needed:

//- NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)

// NEO_KHZ400 400 KHz (classic 'vl' (not v2) FLORA pixels, WS2811 drivers)

//' NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)

// NEO_RGB Pixels are wired for RGB bitstream (vl FLORA pixels, not v2)
Adafruit NeoPixel strip = Adafruit NeoPixel(60, PIN, NEO_GRB + NEO KHZ800);

void setup() {
strip.begin();
strip.show(); // Initialize all pixels to 'off'

}

void loop() {
//' Some example procedures showing how to display to the pixels:
colorWipe(strip.Color(255, 0, 0), 50); // Red
colorWipe(strip.Color(0, 255, 0), 50); // Green
colorWipe(strip.Color(0, 0, 255), 50); // Blue

// Send a theater pixel chase in...
theaterChase(strip.Color(127, 127, 127), 50); // White
theaterChase(strip.Color(127, 0, 0), 50); // Red
theaterChase(strip.Color( 0, 0, 127), 50); // Blue

rainbow(20);
rainbowCycle(20);
theaterChaseRainbow(50);

}

// Fill the dots one after the other with a color
void colorWipe(uint32 t ¢, uint8 t wait) {
for(uintl6_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

b
}

void rainbow(uint8 t wait) {
uintl6 ti, j;

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((itj) & 255));
}
strip.show();
delay(wait);

b
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uintl6 ti, j;

for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);

}
b

//Theatre-style crawling lights.
void theaterChase(uint32 t c, uint8 t wait) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q <3; q++) {
for (int i=0; 1 < strip.numPixels(); i=1+3) {
strip.setPixelColor(i+q, ¢); //turn every third pixel on

}

strip.show();
delay(wait);

for (int i=0; 1 < strip.numPixels(); i=1+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
h
}
h
}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8 t wait) {
for (int j=0; j <256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q <3; q++) {



91 for (int i=0; 1 < strip.numPixels(); i=1+3) {

92 strip.setPixelColor(i+q, Wheel( (i+) % 255)); //turn every third pixel on
93 }

94 strip.show();

95

96 delay(wait);

97

98 for (int i=0; 1 < strip.numPixels(); i=1+3) {

99 strip.setPixelColor(i+q, 0); //turn every third pixel off
100 }

101 }

102 }

103}

104

105// Input a value 0 to 255 to get a color value.

106// The colours are a transitionr - g - b - back to r.
107uint32_t Wheel(byte WheelPos) {

108 if(WheelPos < 85) {

109 return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
110 } else if(WheelPos < 170) {

111 WheelPos -= 85;

112 return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
113 } else {

114 WheelPos = 170;

115 return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
116 }

117}

FastLED (FastSPI_LED)

FastLED is the successor of FastSPI_LED and FastSPI_LED2. According to it’s
maintainer(s) the name changed to FastLED since it’s no longer just focussing in SPI LED
strips like the one we’re using in our project (WS2811/WS2812). Some older chipsets have
been dropped so for older LED strips (non WS2801-WS2812) might want to resort to the
older FastSPI LED?2 library.

To download the library you can either click the “Download ZIP” button on the FastLED
GitHub page, click this link to directly download the ZIP file, or download a snapshot
from Tweaking4All. As usual: we highly recommend getting the files from the source ...
the Tweaking4All version is only here as a backup and is most likely outdated.

DOWNLOAD - FastLED

Filename: FastLED.zip
Size: 57.8 KiB
Date: January 3, 2014

‘Download Now_



If you downloaded the Tweaking4All ZIP file, then in the Arduino Software simple choose
“Sketch” “Import Library...” “Add Library...” and in the file dialog select the downloaded
ZIP file. This will automatically install the library for you (requires Arduino 1.0.5 or newer).

If you however downloaded the official version and this trick did give you an error message,
then copy the files from the ZIP archive into a folder called “FastLED” in your Arduino
Library directory. More details can be found on the Arduino page concerning Libraries.

e Windows: My Documents\Arduino\libraries\
e MacOS X: ~/Documents/Arduino/libraries/
e Linux: ~/Documents/Arduino/libraries/

After installing the Library, close and restart the Arduino software so that the examples are
not visible in the menu.

The first example I tried was “testleds” only to find out that it was a left over from
FastSPI LED and did not run. So I updated the code to work with FastLED, you can copy and
paste it into the Arduino editor.

Make sure to verify the following lines:
— line 3: make sure you set the number of LEDs right in #define NUM LEDS 60
— line 8: make sure the correct PIN is set in #define PIN 6

Here you will see that the NeoPixel demo was maybe cooler, but the code for FastLED
appears shorter. In the end both Libraries are solid, so pick which you prefer.

As with the NeoPixel code — I highly recommend snooping through the code, modify a few
things and see what it does and such. It’s actually fun to do.

Here a video of what the demo does — I didn’t take too much effort to do a perfect video, and I
didn’t record the entire test, heck I didn’t even take the LED strip out of the zip-lock bag

00:00
00:18

Addressing LEDs with FastLED works a little different but one could see it as much easier ...
personal preference ... for a list of pre-defined colors see the list after the source code.

Note : to switch a LED Off;, set the color to Black as such, before calling the show()
function: 1eds[10] = CRGB::Black; .

lleds[10] = CRGB::Red; // Set LED 10 to red

2FastLED.show();  // Show changes

3

4.

5

6leds[10].r =255; //setred for LED 10 (Color = Red + Green + Blue)



7leds[10].g =125; // set green for LED 10
8leds[10].b = 0; // set blue for LED 10
9FastLED.show();  // Show changes

1 #include "FastLED.h"

2 // Number of RGB LEDs in the strand
3 #define NUM_LEDS 60
4
5

// Define the array of leds
6 CRGB leds[NUM_LEDS];
7 // Arduino pin used for Data
8 #define PIN 6
9
10void setup()
114
12 FastLED.addLeds<NEOPIXEL, PIN, RGB>(leds, NUM_LEDS);
13}
14
15void loop() {
16 // one at a time
17 for(intj=0;j<3;j++) {
18 for(inti=0;1<NUM LEDS;i++) {
19  memset(leds, 0, NUM_LEDS * 3);
20 switch(j) {
21 case 0: leds[i].r = 255; break;
22 case 1: leds[i].g = 255; break;
23 case 2: leds[i].b = 255; break;
24}
25  FastLED.show();
26  delay(10);
27 '}
28 }
29
30 // growing/receeding bars
31 for(intj=0;j<3;j++) {
32 memset(leds, 0, NUM_LEDS * 3);
33 for(inti=0;i<NUM_LEDS;it++) {
34 switch(j) {
35 case 0: leds[i].r = 255; break;
36 case 1: leds[i].g = 255; break;
37 case 2: leds[i].b = 255; break;
38}
39  FastLED.show();
40  delay(10);
41 }
42 for(inti=NUM_ LEDS-1;1>=0;1--) {
43 switch(j) {
44 case 0: leds[i].r = 0; break;
45 case 1: leds[i].g = O; break;



46 case 2: leds[i].b = 0; break;
47 }

48  FastSPI LED.show();

49  delay(1);

50 }

51}

52

53 // Fade in/fade out

54 for(intj=0;j<3;j++) {

55 memset(leds, 0, NUM_LEDS * 3);
56 for(intk = 0; k <256; k++) {
57  for(inti=0;1<NUM LEDS;i++) {
58 switch(j) {

59 case 0: leds[i].r = k; break;
60 case 1: leds[i].g = k; break;
61 case 2: leds[i].b = k; break;
62 }

63 }

64  FastLED.show();

65  delay(3);

66 }

67 for(int k =255; k>=0; k--) {
68  for(inti=0;1i<NUM_LEDS;i++) {
69 switch(j) {

70 case 0: leds[i].r = k; break;
71 case 1: leds[i].g = k; break;
72 case 2: leds[i].b = k; break;
73 }

74}

75  FastLED.show();

76  delay(3);

77 }

78 }

79}

Predefined colors in FastLED:

AliceBlue = OxFOF8FF
Amethyst = 0x9966CC
AntiqueWhite = O0xFAEBD7
Aqua = O0xO00FFFF
Aquamarine = Ox7FFFD4
Azure = OxXFOFFFF

Beige = OxF5F5DC

Bisque = OxFFE4C4

Black = 0x000000
BlanchedAlmond = O0xFFEBCD
Blue = 0x0000FF
BlueViolet = O0x8A2BE2
Brown = 0xA52A2A
BurlyWood = 0xDEB887



CadetBlue = 0x5F9EAQ
Chartreuse = 0x7FFF00
Chocolate = 0xD2691E
Coral = OxFF7F50
CornflowerBlue = 0x6495ED
Cornsilk = OxXFFF8DC
Crimson = 0xDC143C

Cyan = O0xOOFFFF

DarkBlue = 0x00008B
DarkCyan 0x008B8B
DarkGoldenrod = 0xB8860B
DarkGray = O0xA9A9A9
DarkGreen = 0x006400
DarkKhaki = 0xBDB76B
DarkMagenta = 0x8B008B
DarkOliveGreen = 0x556B2F
DarkOrange = 0xFF8CO00
DarkOrchid = 0x9932CC
DarkRed = 0x8B000O
DarkSalmon = 0xE9967A
DarkSeaGreen = 0x8FBC8F
DarkSlateBlue = 0x483D8B
DarkSlateGray = 0x2F4F4F
DarkTurquoise = 0x00CED1
DarkViolet = 0x9400D3
DeepPink = 0xFF1493
DeepSkyBlue = 0x00BFFF
DimGray = 0x696969
DodgerBlue = 0x1E90FF
FireBrick = 0xB22222
FloralWhite = OxFFFAFO
ForestGreen = 0x228B22
Fuchsia = OxFFOOFF
Gainsboro = 0xDCDCDC
GhostWhite = OxF8F8FF
Gold = OxFFD700
Goldenrod = 0xDAA520
Gray = 0x808080

Green = 0x008000
GreenYellow = OxADFF2F
Honeydew = OxFOFFFO
HotPink = O0xFF69B4
IndianRed = 0xCD5C5C
Indigo = 0x4B0082

Ivory = OxXFFFFFO

Khaki = O0xFOE68C
Lavender = OxXEG6EG6FA
LavenderBlush = O0xFFFOFS5
LawnGreen = 0x7CFCO0O0
LemonChiffon = OxXFFFACD
LightBlue = 0xADD8EG6
LightCoral = 0xF08080
LightCyan = OxEOFFFF
LightGoldenrodYellow = OxFAFAD2
LightGreen = 0x90EE90
LightGrey 0xD3D3D3
LightPink = OxFFB6C1
LightSalmon = OxFFAQO7A
LightSeaGreen = 0x20B2AA
LightSkyBlue = 0x87CEFA
LightSlateGray = 0x778899



LightSteelBlue = 0xBOC4DE
LightYellow = OxFFFFEO
Lime = 0x00FFO0O

LimeGreen = 0x32CD32
Linen = OxXFAFOEG6

Magenta = O0xFFOOFF
Maroon = 0x800000
MediumAquamarine = 0x66CDAA
MediumBlue = 0x0000CD
MediumOrchid = 0xBA55D3
MediumPurple = 0x9370DB
MediumSeaGreen = 0x3CB371
MediumSlateBlue = 0x7B68EE
MediumSpringGreen = 0x00FA9A
MediumTurquoise = 0x48D1CC
MediumVioletRed = 0xC71585
MidnightBlue = 0x191970
MintCream = OxF5FFFA
MistyRose = OxFFE4E1l
Moccasin = OxFFE4BS5
NavajoWhite = OxFFDEAD
Navy = 0x000080

OldLace = 0OxFDF5EG

Olive = 0x808000
OliveDrab = 0x6B8E23
Orange = 0xFFA500
OrangeRed = 0xFF4500
Orchid = 0xDA70D6
PaleGoldenrod = OxXEEE8AA
PaleGreen = 0x98FB98
PaleTurquoise = O0xXAFEEEE
PaleVioletRed = 0xDB7093
PapayaWhip = OxFFEFD5
PeachPuff = OxFFDAB9

Peru = 0xCD853F

Pink OxFFCOCB

Plaid = 0xCC5533

Plum = OxDDAQODD
PowderBlue = 0xBOEOEG6
Purple = 0x800080

Red = O0xFF0000

RosyBrown = 0xBC8F8F
RoyalBlue 0x4169E1
SaddleBrown = 0x8B4513
Salmon = 0xFA8072
SandyBrown = 0xF4A460
SeaGreen = 0x2E8B57
Seashell = OxFFF5EE
Sienna = 0xA0522D

Silver = 0xCOCOCO

SkyBlue = 0x87CEEB
SlateBlue = 0x6A5ACD
SlateGray = 0x708090

Snow = OxFFFAFA
SpringGreen = 0x00FF7F
SteelBlue = 0x4682B4

Tan = 0xD2B48C

Teal = 0x008080

Thistle = 0xD8BFDS8
Tomato = 0xFF6347
Turquoise = 0x40E0DO



Violet = OxEE82EE
Wheat = OxF5DEBR3

White = OXFFFFFF
WhiteSmoke = O0xF5F5F5
Yellow = OxXFFFFO0O
YellowGreen = 0x9ACD32

30

Related Articles

2014
03.28 Boblight Config Maker — Update 1.3 available
03.27 Arduino Ethernet — Pushing data to a (PHP) server
03.25 Arduino Ethernet — Pulling data from your Arduino
03.24 Web-Enable your Arduino with an Arduino ENC28J60 Ethernet shield ...
03.22 How to measure temperature with your Arduino and a DS18B20
03.16 AmbiLight with XBMC Boblight, OpenElec and WS2811/WS2812 LEDs
03.10 Boblight Config Maker for Windows, MacOS X and Linux
01.29 SainSmart 1.8” TFT Arduino Color LCD Display
01.01 Arduino — Getting started with your first project
2013
12.31 Hardware — What is a Breadboard and How to use it ...

Donation options

Donations are very much appreciated, but not required. Donations will be used for web-
hosting expenses, project hardware or a motivational boost (a drink or snack). Thank you very
much for those have donated already! It's truly AWEsSOmE to see that folks like our articles
and small applications.

e Shop at Amazon
e BitCoin

Comments

There are 96 comments. You can read them below.
You can post your own comments by using the form below, or reply to existing comments by
using the "Reply" button.



