

Remote Control and Receiver-
Transceiver Specifications and
Requirements for Windows
Media Center in Windows
Operating Systems

Applies to: Windows® Media Center is included in Windows® 7 Home Premium, Windows® 7 Professional, and

Windows® 7 Ultimate. Windows Media Center is also included in Windows® 7 Enterprise, which is not an OEM-

licensed product.

Abstract: This document is intended for independent hardware vendors (IHVs) and PC OEM partners who want to

create remote control and receiver device combinations that decode input from the remote control for Windows

Media Center. This document provides details, requirements, and options for designing and building remote controls

and receivers for Windows Media Center Technologies on Windows® operating systems.

(c)2011 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and views expressed

in this document, including URL and other Internet Web site references, may change without notice. You bear the risk

of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You

may copy and use this document for your internal, reference purposes.

Microsoft, Windows 7, Win32, Windows, Windows Vista and Windows XP are either registered trademarks or

trademarks of Microsoft Corporation in the United States or other countries or regions.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

Introduction ... 1

What‘s New ... 1

Remote Control Specifications ... 2

Remote Control Requirements .. 2

Range Requirements ... 2

IR Protocol ... 2

Button Code Set Definition .. 2

Windows Logo Program .. 2

OEM Requirements ... 2

Remote Control Button Requirements ... 6

Button Functionality and Windows Mapping .. 11

Feedback LED ... 35

Backlight .. 36

Additional Navigation Methods .. 36

Additional Audio/Video Control Methods ... 36

Multifunction Remote Controls - Highly Recommended .. 36

Remote Control for OEM Bundled PC and Consumer Electronic Equipment 36

Windows Media Center Universal Remote Controls ... 37

TV standards and Windows Media Center Remote Controls .. 38

Windows Media Center Two-Way Remote Control with Compatible Auxiliary Display for

Windows SideShow ... 39

Extender for Windows Media Center Remote Controls ... 39

Remote Address .. 39

Labels and Icons for the Remote Control .. 39

Windows Media Center Keyboards ... 39

Green Start Button Requirements ... 41

Key Logo License Agreement and the Green Start Button ... 41

Green Start Button Requirements ... 41

Green Start Button Subassembly .. 42

Device Housing and Orientation .. 44

Sample Implementation and Design Variations ... 51

Resources .. 56

Receiver/Transceiver Specifications .. 59

Overview of IR Receiver Options .. 59

Concepts .. 59

The Remote Control Functionality Needed ... 62

How Should You Build Your Device .. 63

More Complicated Receiver Examples.. 66

Connecting Your Receiver to the PC ... 68

Things to Remember When Building Your Device .. 70

IR Receiver/Transceiver Hardware Requirements ... 73

Components of an IR Transceiver ... 74

IR Transceiver Requirements .. 74

Emulation Requirements ... 76

Device Design Considerations ... 77

Microsoft Compatible Device Descriptor.. 82

Commands and Responses .. 85

Commands That Set Device State .. 86

Commands That Query Device State .. 92

Responses to Commands: Non-Error Cases .. 99

Responses to Commands: Error Cases .. 111

Illegal Command Handling ... 112

Bootloader Implementation .. 114

Bootloader Commands .. 121

Bootloader Responses .. 126

Format for Transmitting and Receiving IR ... 129

Suggested Firmware Memory Organization .. 132

Port Driver Requirements .. 133

Basic CIR Architecture ... 134

Introduction to the CIRClass Framework ... 135

CIR Version 1 DDI and Version 2 DDI ... 137

CIRClass and CIR Port Interface Details ... 139

Example CIR Port Driver – Hardware Design Requirements and Considerations 147

IOCTL Definitions... 151

IR_ENTER_PRIORITY_RECEIVE_PARAMS ... 160

IR_DEV_CAPS .. 160

IR_DEV_CAPS_V1 .. 161

IR_DEV_CAPS_V2 (Version 2 Only)... 161

IR_PRIORITY_RECEIVE_PARAMS ... 162

IR_RECEIVE_PARAMS .. 163

IR_SET_WAKE_PATTERN_PARAMS (Version 2 Only) .. 164

IR_TRANSMIT_PARAMS .. 164

IR_TRANSMIT_CHUNK .. 165

HID Device Requirements ... 165

HID Remote Control Receiver Requirements .. 166

HID Usage Codes .. 167

Reserved Button Codes ... 173

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

1

Introduction
This document provides the information needed to design a remote control and receiver that will

work with those versions of Windows 7 that include Windows Media Center. This document

describes the requirements for a remote control, the remote control functions that must be

supported, the hardware specifications, and the infrared (IR) protocol requirements. This

document also describes in depth the different options that are available for building a receiver

that converts the commands from the remote control into actions for Windows Media Center.

What’s New

General

 Combined the Remote Control Specifications and Receiver/Transceiver Specifications

documents into one document for convenience.

 Changed the Power button label to Sleep throughout the document to accurately reflect the

functionality of this remote control button.

 Removed the option for Green Button remote controls from Windows 7 Home Basic.

Remote Control Updates

 Added an option to support the Microsoft Quatro Pulse remote control IR protocol.

 Added support for the optional buttons for ISDB markets: 10, 11, 12, Audio Select, Logical

Chanel Input, and Network Select.

 Added the option to use the "moon" icon for the Sleep button (formally the Power button).

 Updated the label for the "*" button to include a "." ("*/.")

 Updated the icon for the More Information button to add a circle around the "I".

 Added clarification for the ordering of the color buttons for ISDB markets.

 Updated the "TV standards and Windows Media Center Remote Controls" section, which

describes the types of buttons that can be distributed in different regions.

 Updated to have the option to remove the text labels above the number pad buttons.

Receiver/Transceiver Updates

 Added an "Overview of IR Receiver Options" section to help OEM partners understand the

options for building Windows Media Center remote control receivers.

 Updated requirements to support the Microsoft Quatro Pulse remote control IR protocol, as

follows:

Receivers must wake the system from both Microsoft RC-6 and Microsoft Quatro Pulse IR

protocols.

 Updated the Port Driver specifications to include the version 2 Device Driver Interface (version 2

DDI), as follows:

 The version 2 DDI adds robust reporting of hardware capabilities so that Windows Media

Center UI can appropriately adjust based on what the hardware can support.

 Better support for programmability of the Sleep button.

 Added support for discrete sleep and wake keys, which may require emulator firmware updates.

 Added the HID descriptor used for producing HID events for reference.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 2

Remote Control Specifications
This section contains the specifications and requirements for the remote control and the Green

Start button.

Remote Control Requirements

This section provides an overview of the required remote control functionality for Windows Media

Center Technologies (referred to as a Windows Media Center computer).

The list of required remote control buttons and button functionality is included in this document.

Range Requirements

 IR remote controls: The range of transmission of the remote control shall be at least 5 meters at

both the center of the receiver and up to 2 meters off center.

 Non-IR remote controls: The range of transmission of the remote control shall be at least 5

meters in all directions (regardless of the position of the receiver that is attached to the PC).

IR Protocol

Microsoft recommends that OEMs use either the Philips/Microsoft RC-6 or the Microsoft/SMK QP

IR protocol.

Button Code Set Definition

The button code is the integer that the IR remote control sends to represent the button that was

pressed on the remote control. This button code is then translated by the Windows Media Center

IR drivers into commands used by the operating system.

Windows Logo Program

For a Windows Media Center remote control to be certified for the Windows logo, it must follow

the Windows Logo Program. The Windows Logo Program requires that a series of tests be

performed to verify that the remote control functions properly. The test tool will be included with

the Windows Logo Kit. Existing Windows Media Center remote controls must meet the latest

released Remote Control Specifications described in this document.

OEM Requirements

The Windows Media Center remote control is the primary device that is used to interact with and

perform tasks in Windows Media Center. Therefore, a set of requirements is defined to ensure

that the devices work together, work consistently, and create a predictable user interface. These

requirements cover three main areas: experience branding, design overview, and button

functionality.

Experience Branding

All Windows Media Center Remote Controls will use the same button treatment for the Windows

Media Center Green Start button.

The Green Start button presents the Microsoft product branding and serves as an integral part of

the overall user experience. Users should be able to relate easily to any device in the Windows

Media Center ecosystem as part of the same Windows Media Center user experience. Microsoft

has chosen to use the Green Button Assembly and its physical appearance as the branding

mechanism. This branding should be visible but not overpowering and have a functional role in

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

3

controlling the user interface in Windows Media Center. The Green Button is used exclusively for

starting Windows Media Center.

This brand extends beyond the remote into print and on-screen iconography. To extend the

branding, all Windows Media Center remotes will have the same Green Start button. The

Windows Key Logo license agreement specifies the requirements for licensing the logo.

The Windows Media Center Green Start button assembly size on a remote should be based on

the type of remote that is required. For the standard rubber-based Windows Media Center remote

control for a computer, the 11 mm Green Start button must be used. For a membrane-based

remote control, the Green Start button artwork that is provided can be scaled to any size between

6.6 mm and 11 mm. However, the Green Start button image cannot be smaller than the largest

button image for any of the other buttons that appear on the remote control. The 6.6 mm Green

Start button assembly, which is discussed later in this document, can be used only when the

height of the remote control housing is 12 mm or less. For more information about the Green

Start button, including implementation details, see the Green Start Button Requirements section

later in this document.

Design Overview

The following illustration is a conceptual industrial design of a remote control for Windows Media

Center.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 4

Figure 1: Illustration of a conceptual industrial design of a

Windows Media Center remote control

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

5

This conceptual remote control represents the required set of functionality that must be provided

by the Windows Media Center remote control. OEM partners can add additional functionality;

however, this functionality must not interfere with or displace the required functionality.

The Windows Media Center remote can be separated into the functional areas described in the

following list. The buttons in each functional area on the remote control should remain clustered

together in the final remote control design because the buttons provide related functionality in

terms of how the user interacts with and controls Windows Media Center.

Microsoft will provide localized text for the remote control. These text strings must be used to

maintain consistency between the program's user interface text and the remote control.

 Navigation controls. The navigation controls form the main interaction point with the user

interface. These controls enable the user to control Windows Media Center easily. This interface

is based on a focus point that can be moved around the screen to perform a function or task in

Windows Media Center. This ―tab interface‖ lets the user to navigate through the user interface

when they are sitting farther away from their display (compared to where they are sitting in a

typical computer scenario).

 Transport controls. The transport controls are used to manage and play digital media content in

Windows Media Center. This includes playing digital audio and video files and streams, playing

and recording TV, playing CDs and DVDs, and playing slide shows. All buttons in the transport

control cluster must be grouped together on the remote control, and additional buttons cannot be

placed in the middle of the cluster of transport control buttons.

 Audio and video controls. The audio and video (A/V) controls enable the user to do tasks such

as adjust the volume and change channels. The Standby button is included in this functional

group even though the button is placed on a different part of the remote control (to prevent the

user from accidentally pressing the button when using the remote control).

 Numeric keypad. The numeric keypad is used to enter numbers in Windows Media Center.

 Interactive TV buttons. The Interactive TV buttons are dedicated to starting and navigating TV

experiences such as Teletext or Broadcast Markup Language (BML).

The following illustration is a conceptual industrial design of a remote control that includes

Interactive TV controls for Windows Media Center. The conceptual design of the remote control

includes a series of Windows Media Center shortcut buttons that let the user quickly go to an

experience—such as to play or record TV, display the Guide, or play a DVD—by pressing a

single button.

The following is a list of suggestions to follow, in addition to the button requirements listed later in

this document, when designing a Windows Media Center remote control:

 The number 5 button on the numeric keypad should have a raised nub or dimple to help the user

locate the center of the numeric keypad by touch.

 The Record button should be flush with the remote control case to reduce the risk of accidentally

pressing the button.

 Place a chamfer on the Skip Forward and Skip Backward buttons to help physically differentiate

these buttons from the Fast Forward and Rewind buttons on the remote control. The Skip

Forward and Skip Backward buttons are commonly used when the user is playing recorded TV,

where it is important for the user to differentiate the buttons by touch.

 The Play and Pause buttons should be grouped together in a recessed area or have a graphical

border treatment. This helps to convey the message to the user that the buttons are related and

often used together.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 6

 In addition to providing visible icons or labels for the directional pad in the navigation controls,

adding physical effects such as etching the Up, Down, Left, and Right Arrows into hard buttons

will help the user to discover and use these buttons.

Remote Control Button Requirements

The following sections describe the required and optional buttons on the remote control. The

following sections are separated according to the button category—Microsoft Required, Microsoft

Recommended, Microsoft Optional, Microsoft Reserved, or Microsoft Retired buttons.

These button categories are used throughout this document when listing Windows Media Center

remote control buttons and describing button functionality.

Microsoft Required Buttons

All Windows Media Center remote controls must include all Microsoft Required buttons.

Microsoft Required buttons are buttons that must be included on the remote control so that the

user can fully interact with the Windows Media Center user interface, and can play and manage

different media experiences in Windows Media Center.

The tables in this section identify the Microsoft Required buttons. Which remote control buttons

are required will differ based on whether the remote control will be distributed with a Windows

Media Center computer that has TV tuner hardware.

Navigation Buttons

The following table identifies the Microsoft Required navigation buttons for Windows Media

Center computers.

Button name Required for computers

that include TV tuner

hardware

Required for computers that do

not include TV tuner hardware

Green Start

button

Yes Yes

Up Yes Yes

Down Yes Yes

Left Yes Yes

Right Yes Yes

OK Yes Yes

More Yes Yes

Back Yes Yes

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

7

Transport Controls

The following table identifies the Microsoft Required transport control buttons for Windows Media

Center computers.

Button name Required for computers

that include TV tuner

hardware

Required for computers that do

not include TV tuner hardware

Play/Pause

combo

Yes Yes

Play Yes Yes

Pause Yes Yes

Stop Yes Yes

Rewind Yes Yes

Fast Forward Yes Yes

Skip Backward Yes Yes

Skip Forward Yes Yes

Record Yes No

Note Windows Media Center remote controls must have the ability to activate a Play and a

Pause command. This can be implemented as either a separate button for each command or as

a single button that toggles between the two commands. The current conceptual design for the

Windows Media Center remote control uses separate buttons for Play and Pause.

Audio and Video Controls

The following table identifies the Microsoft Required audio and video control buttons for Windows

Media Center computers.

Button name Required for computers

that include TV tuner

hardware

Required for computers that do

not include TV tuner hardware

Sleep Toggle

(formerly Power

Toggle)

Yes Yes

Wake* Yes Yes

Sleep* Yes Yes

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 8

Button name Required for computers

that include TV tuner

hardware

Required for computers that do

not include TV tuner hardware

Volume Up Yes Yes

Volume Down Yes Yes

Mute Yes Yes

Channel/Page

Up

Yes No

Channel/Page

Down

Yes No

* Note All Windows Media Center remote controls must have either the single Sleep toggle

button or both the Wake and Sleep buttons. No remote control should have all three buttons

combined on one remote control. These three buttons are the only buttons on the remote control

that can wake the system from the sleep mode. However, any shortcut or extensibility button that

is designated by Microsoft can wake the system first before starting a program that is designed

and developed for the 10-foot experience in Windows Media Center.

Windows Media Center Shortcut Keys

The following table identifies the Microsoft Required Windows Media Center shortcut key for

Windows Media Center computers.

Button name Required for computers

that include TV tuner

hardware

Required for computers that do

not include TV tuner hardware

Guide Yes No

The following table identifies the Microsoft Required buttons for Windows Media Center

computers. Buttons are required in locales that support Interactive TV functionality.

Button name Required for computers

that include TV tuner

hardware

Required for computers that do

not include TV tuner hardware

Red Yes No

Green Yes No

Blue Yes No

Yellow Yes No

Teletext On/Off Yes No

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

9

Microsoft Recommended Buttons

Windows Media Center remote controls can also include any or all of the Microsoft

Recommended, Microsoft Optional, or Microsoft Reserved buttons.

Microsoft Recommended buttons are buttons that have consistently been shown to score high in

usability studies about the perceived need by the end users.

Microsoft strongly recommends that the buttons in the following list be included on the remote

control to highlight the user experience in Windows Media Center. However, these buttons are

not required.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 10

The following list identifies the Microsoft Recommended buttons for a Windows Media Center

remote control:

 DVD. DVD Menu.

 Numeric keypad. Individual buttons for numbers 0 to 9, CLEAR, ENTER, #, and *. If a numeric

keypad will appear on the remote control, then all these buttons need to be implemented on the

remote control.

 Audio and volume controls. Channel Up and Channel Down.

If a remote control includes a numeric keypad, then the audio and volume controls must also be

included on the remote control.

 Windows Media Center shortcuts. Live TV and Recorded TV.

 Windows Media Center remote control buttons for ISDB-T markets. 10, 11, 12, Sub Audio,

and Input Channel. The 10,11,12 are highly recommended for this market as they represent the

national TV channels.

 Other buttons. Zoom.

Microsoft Optional Buttons

Microsoft Optional buttons are buttons that are supported by Windows Media Center but are not

required on a Windows Media Center remote. The remote control concept design does not

include all of these buttons. However, the functionality for these buttons is available if a

manufacturer wants to include these buttons.

The following list identifies the Microsoft Optional buttons for a Windows Media Center remote

control:

 Windows Media Center shortcuts. Music, Pictures, Videos, Radio, and Extras.

 DVD. DVD Angle, DVD Audio, and DVD Subtitle.

 Extensibility buttons. Ext0 through Ext11 (12 buttons total).

 Xbox 360. For more information, send e-mail to xremotes@microsoft.com.

 Other buttons. Print, Network Selection, Video Selection, and Closed Captioning On/Off.

Microsoft Reserved Buttons

Microsoft Reserved buttons are defined now to allocate space in the button map and infrared (IR)

stack. Buttons in this class do not currently have related functionality that is implemented in

Windows Media Center. However, these button functions could be included in future releases.

While we welcome developers to use these messages in their products, future uses of these

buttons by Microsoft products might cause incompatibility with preexisting usages.

The following list identifies the Microsoft Reserved buttons for a Windows Media Center remote

control:

 Windows Media Center remote control miscellaneous buttons. Channel Info.

 DVD. DVD Top Menu and Eject

 Blu-ray buttons. BD Tool.

 Other buttons. Display and Exit.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

11

Microsoft Retired Buttons

Microsoft Retired buttons support functionality that will no longer be available in Windows Media

Center. Retired buttons cannot be included on new Windows Media Center remote controls.

Due to design changes in the user interface of Windows Media Center, the following buttons

cannot be included on new Windows Media Center remote controls:

 My TV

 Messenger

 Media Center Edition Power Menu

 Media Center Edition On

Button Functionality and Windows Mapping

This section provides a detailed description of button functionality, the corresponding Windows

mapping, and related icons and labels when applicable. The buttons are grouped by functional

areas.

Navigation Control Buttons - Required

This section describes the required navigation control buttons that are shown in the following

figure.

Figure 2: Illustration of the required navigation controls for a Windows Media Center

remote control

Green Start Button

Button space: Microsoft Required

Icon:

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 12

Label: MEDIA CENTER

Button code: 13

First press action: Takes the user to the Windows Media Center Start menu. If Windows Media

Center is not already started, Windows Media Center starts and the Windows Media Center Start

menu appears.

The Green Start button is the only button on a Windows Media Center remote control that can

start Windows Media Center and display the Windows Media Center Start menu. The Green Start

button may not be used for any other purpose.

On a keyboard with Media Center functionality, Microsoft requires that the Green Start button is

used to start Windows Media Center.

On a front panel or laptop with Media Center functionality, Microsoft strongly recommends that

the Green Start button can be used to start Windows Media Center.

Second press action: Dismisses the Windows Media Center Start menu and takes the user to

the last page that was previously viewed. If Windows Media Center is in windowed mode,

pressing the Green Start button will put Windows Media Center into full-screen mode.

Auto-repeat: No

Remarks: The Green Start button assembly must be used on Windows Media Center remote

controls. The provided artwork can be used if a manufacturer is creating an on-screen remote or

membrane-based remote control. For more information about the Green Start button, including

implementation details, see the Green Start Button Requirements section later in this document.

Important Microsoft encourages the OEM to add the text " Windows Media Center" under the

Windows Media Center Green Start button to identify more clearly the function of the button for

the consumers.

Up

Button space: Microsoft Required

Icon:

Label: No label

Button code: 30

First press action: Moves the focus point up one position. If the focus point is at the top of the

screen, pressing this button results in no action.

Second press action: Repeats first press action.

Auto-repeat: Yes

Down

Button space: Microsoft Required

Icon:

Label: No label

Button code: 31

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

13

First press action: Moves the focus point down one position. If the focus point is at the bottom

of the screen, pressing this button results in no action.

Second press action: Repeats first press action.

Auto-repeat: Yes

Left

Button space: Microsoft Required

Icon:

Label: No label

Button code: 32

First press action: Moves the focus point to the left one position. If the focus point is at the left-

most part of the screen, the focus point goes to the previous page in the user interface stack.

Second press Action: Repeats first press action.

Auto-repeat: Yes

Right

Button space: Microsoft Required

Icon:

Label: No label

Button code: 33

First press action: Moves the focus point to the right one position. If the focus point is at the

right-most part of the screen, pressing this button results in no action.

Second press action: Repeats first press action.

Auto-repeat: Yes

OK

Button space: Microsoft Required

Icon: OK

Label: OK

Button code: 34

First press action: Performs the action at the focus point.

Second press action: Repeats the action at the new focus point (if action can be taken at the

new focus point).

Auto-repeat: No

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 14

Back

Button space: Microsoft Required

Icon:

Label: BACK

Button code: 35

First press action: Moves back one position in the user interface stack.

Second press action: Repeats first press action.

Auto-repeat: No

More Info Button

Button space: Microsoft Required

Icon:

Label: MORE INFO or INFO

Button code: 15

First press action: Provides information for the focus point (if information is available).

Second press action: Hides displayed information.

Auto-repeat: No

Transport Control Buttons – Required

This section describes the required transport control buttons that are shown in the following

figure.

Figure 3: Illustration of the transport controls for a Windows Media Center remote control

Play

Button space: Microsoft Required

Icon:

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

15

Label: PLAY

Button code: 22

First press action: Starts playing media at the current position. If playback is paused, pressing

this button begins playback from the current position.

Second press action: None

Auto-repeat: No

Pause

Button space: Microsoft Required

Icon:

Label: PAUSE

Button code: 24

First press action: Pauses media playback at the current position.

Second press action: Toggles between pausing and continuing playback at the current position.

Auto-repeat: No

Play/Pause Combination

Button space: Microsoft Required

Icon:

Label: PLAY/PAUSE

Button code: 110

First press action: Starts playing media at the current position. If paused, pressing this button

begins playback from the current position.

Second press action: Toggles between pausing and continuing playback at the current position.

Auto-repeat: No

Remarks: Windows Media Center remote controls must have the ability to activate a Play and a

Pause command. This functionality can be implemented as either a separate button for each

command or as a single button that toggles between the two commands.

Stop

Button space: Microsoft Required

Icon:

Label: STOP

Button code: 25

First press action: Stops playing media at the current position and moves the pointer to the

starting point of the digital media file.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 16

Second press action: None

Auto-repeat: No

Record

Button space: Microsoft Required (for Windows Media Center computers that include TV tuner

hardware)

Icon:

Label: REC

Button code: 23

First press action: Records the TV program as a file on a hard disk. If the pause buffer enables

it, recording starts at the beginning of a show as defined by the Guide in Windows Media Center.

Second press action: None

Auto-repeat: No

Remarks: Microsoft recommends using a red record button on the remote control.

Fast Forward

Button space: Microsoft Required

Icon:

Label: FWD

Button code: 20

First press action: Speeds up the time base of the digital media file to the first fast forward value

(3X). If a slide show is currently playing, the next picture is displayed when this button is pressed.

Second press action: Cycles through the fast forward speed values looping through 0 (normal

speed), 3X, 20X, and 60X. If a slide show is currently playing, the next picture is displayed when

this button is pressed.

Auto-repeat: Yes

Rewind

Button space: Microsoft Required

Icon:

Label: RWD

Button code: 21

First press action: Reverses direction of the digital media stream and speeds up the time base

to the first rewind value (3X). If a slide show is currently playing, the previous picture is displayed

when this button is pressed.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

17

Second press action: Cycles through the rewind speed values looping through 0 (normal

speed), 3X, 20X, and 60X. If a slide show is currently playing, the previous picture is displayed

when this button is pressed.

Auto-repeat: Yes

Skip Forward

Button space: Microsoft Required

Icon:

Label: SKIP FWD

Button code: 26

First press action: Skips forward one increment when this button is pressed. The meaning of an

increment depends on the type of media that is playing:

 If a CD or playlist is playing, the next song is played.

 If a DVD is playing, the next chapter is played.

 If a slide show is playing, the next picture is displayed.

 If a recorded TV show is playing, playback skips ahead 29 seconds.

Second press action: Repeats first press action.

Auto-repeat: Yes

Skip Backward

Button space: Microsoft Required

Icon:

Label: SKIP BACK

Button code: 27

First press action: Skips backward one increment when this button is pressed. The meaning of

an increment depends on the type of media that is playing:

 If a CD or playlist is playing, the previous song is played.

 If a DVD is playing, the previous chapter is played.

 If a slide show is playing, the previous picture is displayed.

 If a recorded TV show is playing, playback skips backward 7 seconds.

Second press action: Repeats first press action.

Auto-repeat: Yes

Audio and Video Control Buttons – Required, Recommended, and
Optional

This section describes the audio and video buttons. They are all required.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 18

The following figure shows the audio and video controls for a Windows Media Center remote

control.

Figure 4: Illustration of the audio and video controls for a Windows Media Center remote

control

Sleep Toggle (formally the Power Toggle button)

Button space: Microsoft Required

Icon: or

Button code: 12

First press action: This button performs the action the user has configured for the Windows

Sleep button. Typically, that action puts the Windows Media Center computer into standby or

sleep mode if the computer is running. If the computer is in sleep mode, the computer wakes

from sleep mode.

Second press action: Toggles the sleep state of the Windows Media Center computer.

Auto-repeat: No

Remarks: This sleep icon is optional. The OEM can use either the previous power icon or the

sleep icon (recommended).

Wake

Button space: Microsoft Required (if choosing discrete Sleep On/Off buttons in design)

Icon: Determined by OEM.

Label: Wake

Button code: 41

First press action: Wakes the computer if the computer is in sleep mode.

Second press action: Takes no action if the computer is in awake mode.

Auto-repeat: No

Remarks: This sleep icon is optional. The OEM can use either the previous power icon or the

sleep icon (recommended).

Sleep

Button space: Microsoft Required (if choosing discrete Sleep On/Off buttons in design). See

Remarks below.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

19

Icon: Determined by OEM.

Label: Sleep

Button code: 42

First press action: If the Windows Media Center computer is turned on, pressing this button

performs the action that is set for the Sleep button.

Second press action: If computer is asleep, pressing this button results in no action.

Auto-repeat: No

Remarks: This sleep icon is optional. The OEM can use either the previous power icon or the

sleep icon (recommended).

The icon can be either the Power icon or the Sleep icon.

All Windows Media Center remote controls must have either a Sleep (Standby) button or both the

Sleep and Wake buttons. No remote should have all three buttons combined on the remote

control.

Volume Up

Button space: Microsoft Required

Icon:

To indicate that the volume is increasing, the following icon is recommended:

Label: VOL +

Button code: 16

First press action: Increases the current volume by one unit. If the audio is currently muted

when this button is pressed, muting is disabled and the volume increases by one unit.

Second press action: Repeats first press action.

Auto-repeat: Yes

Volume Down

Button space: Microsoft Required

Icon:

To indicate that the volume is decreasing, the following icon is recommended:

Label: VOL -

Button code: 17

First press action: Decreases the current volume by one unit. If the audio is currently muted

when this button is pressed, muting is disabled and the volume decreases by one unit.

Second press action: Repeats first press action.

Auto-repeat: Yes

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 20

Channel Up

Button space: Microsoft Required for systems that include TV tuner hardware and for remote

controls that have a numeric keypad. If the system does not include TV tuner hardware and the

remote control does not contain a numeric keypad, this button is Microsoft Recommended.

Icon:

To indicate that the channel number is increasing, the following icon is recommended:

Label: CH +

Button code: 18

First press action: Increases the current channel number by one. If Windows Media Center is in

a list view when this button is pressed, the focus point moves forward one page in the list.

Second press action: Repeats first press action.

Auto-repeat: No

Channel Down

Button space: Microsoft Required for systems that include TV tuner hardware and for remote

controls that have a numeric keypad. If the system does not include TV tuner hardware and the

remote control does not contain a numeric keypad, this button is Microsoft Recommended.

Icon:

To indicate that the channel is decreasing, the following icon is recommended:

Label: CH -

Button code: 19

First press action: Decreases the current channel number by one. If Windows Media Center is

in a list view when this button is pressed, the focus point moves backward one page in the list.

Second press action: Repeats first press action.

Auto-repeat: No

Mute

Button space: Microsoft Required

Icon:

Label: MUTE

Button code: 14

First press action: Mutes the computer audio.

Second press action: Toggles the mute state.

Auto-repeat: No

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

21

Closed Captioning On/Off

Button space: Microsoft Optional

Icon: Determined by OEM.

Label: CC

Button code: 43

First press action: Shows or hides closed captioning. If closed captioning is not currently

displayed, pressing this button will turn on the closed captioning display. If closed captioning is

currently displayed, then pressing this button will turn off closed captioning.

Second press action: Toggles between displaying closed captioning and turning off closed

captioning.

Auto-repeat: No

Interactive TV (Teletext and ISDB-T) Buttons – Required and
Reserved

This section describes the Interactive TV buttons that are supported by Windows Media Center. If

Interactive TV data is supported in the TV signal for the locale that the remote will be distributed

to, Interactive TV buttons must appear on the remote control. These buttons are also used for

Integrated Services Digital Broadcasting (ISDB) Interactive TV functions.

Outside of these two primary video streaming standards, Microsoft reserves these buttons. No

specifications are available for intended Microsoft usage of these buttons. Future use of these

buttons by Microsoft might be incompatible with any implementations generated before the

intended usage is specified.

Additionally, these buttons cannot be overloaded with functionality that works in Windows Media

Center or other programs. These buttons are for Interactive TV functions.

In the Japanese market, the color order for the interactive buttons are (left to right) Blue, Red,

Green, and Yellow.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 22

In other markets the color order for the interactive buttons are (left to right) Red, Green, Yellow

and Blue.

Note For countries or regions that do not support Interactive TV functions, the colored buttons

can be used as OEM extensibility buttons.

Interactive TV On/Off: Teletext On/Off or ISDB-T Data

Button space: Microsoft Required (if implemented), use OEM extensibility in countries or regions

not implementing Interactive TV.

Icon: or

Icon: d (for Japan)

Label: TELETEXT

Button code: 90

First press action: Turns Teletext on and off. If Teletext is off, Teletext is turned on when this

button is pressed. If Teletext is on, Teletext is turned off when this button is pressed.

Second press action: Takes no action.

Auto-repeat: No

Red

Button space: Microsoft Required

Icon: Solid Color Red Button

Label: No required label

Button code: 91

First press action: Goes to the red shortcut link in Interactive TV mode.

Second press action: Takes no action.

Auto-repeat: No

Green

Button space: Microsoft Required

Icon: Solid Color Green Button

Label: No required label

Button code: 92

First press action: Goes to the green shortcut link in Interactive TV mode.

Second press action: Takes no action.

Auto-repeat: No

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

23

Yellow

Button space: Microsoft Required

Icon: Solid Color Yellow Button

Label: No required label

Button code: 93

First press action: Goes to the yellow shortcut link in Interactive TV mode.

Second press action: Takes no action.

Auto-repeat: No

Blue

Button space: Microsoft Required

Icon: Solid Color Blue Button

Label: No required label

Button code: 94

First press action: Goes to the blue shortcut link in Interactive TV mode.

Second press action: Takes no action.

Auto-repeat: No

Exit

Button space: Microsoft Reserved

Icon: To be determined.

Label: To be determined.

Button code: 108

First press action: To be determined.

Second press action: Repeats message.

Auto-repeat: No

Numeric Keypad - Recommended

This section describes the recommended numeric keypad buttons that are shown in the following

figure.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 24

Figure 5: Illustration of a numeric keypad for a Windows Media Center remote control

Note Although it is not required, Microsoft strongly recommends that the letters appear above

the numbers in the number pads. Usability studies have seen significant issues for the consumer

when the letters are below the button.

Button space: Microsoft Recommended

The following table shows the individual buttons of a numeric keypad and the corresponding

icons and button codes.

Button Icon Button code

0 0 - 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

Clear CLEAR 10

Enter ENTER 11

 # 28

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

25

Button Icon Button code

* .

(The "." should be placed on

the label, not on the button

itself.)

Or

*/.

29

Remarks: If a numeric keypad is included on the Windows Media Center remote control, the

remote control must include all the buttons shown for the numeric keypad in the preceding table

and also the Channel Up and Channel Down controls.

Microsoft will provide localized text for the remote control. These text strings must be used to

maintain consistency between the program's user interface text and the remote control.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 26

Shortcut Buttons – Required, Recommended, or Optional

This section describes the shortcut buttons for Windows Media Center. These buttons provide a

quick way for users to access key media experiences in Windows Media Center.

The following shortcut button descriptions list the required button first, the recommended buttons

next, and the optional buttons last. See the "Button space:" entry at the top of each listing.

Guide

Button space: Microsoft Required

Icon:

Label: GUIDE

Button code: 38

First press action: Displays the Guide in Windows Media Center.

Second press action: Cycles through different Guide options.

Auto-repeat: No

Live TV

Button space: Microsoft Recommended

Icon:

Label: LIVE TV

Button code: 37

First press action: Shows live TV on the currently-selected channel.

Second press action: Takes no action.

Auto-repeat: No

Recorded TV

Button space: Microsoft Recommended

Icon:

Label: REC TV

Button code: 72

First press action: Displays the Recorded TV page in Windows Media Center.

Second press action: Takes no action.

Auto-repeat: No

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

27

Music

Button space: Microsoft Optional

Icon:

Label: MUSIC

Button code: 71

First press action: Displays the Music Library in Windows Media Center.

Second press action: Takes no action.

Auto-repeat: No

Pictures

Button space: Microsoft Optional

Icon:

Label: PICTURES

Button code: 73

First press action: Displays the Picture Library in Windows Media Center.

Second press action: Takes no action.

Auto-repeat: No

Videos

Button space: Microsoft Optional

Icon:

Label: VIDEOS

Button code: 74

First press action: Displays the Video Library in Windows Media Center.

Second press action: Takes no action.

Auto-repeat: No

Radio

Button space: Microsoft Optional

Icon:

Label: RADIO

Button code: 80

First press action: Displays the main Radio page in Windows Media Center.

Second press action: Takes no action.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 28

Auto-repeat: No

Extras (formally Online Media)

Button space: Microsoft Optional

Icon: To be determined.

Label: Extras

Button code: 60

First press action: Displays Extras Library in Windows Media Center.

Second press action: Takes no action.

Auto-repeat: No

Extensibility Buttons - Optional

This section describes the extensibility control buttons, which are optional. The standard

Windows Media Center IR protocol provides for 12 extensibility buttons. These buttons map to

EXT0 through EXT11 in the Windows Media Center human interface design (HID) collection. The

IR stack is programmed to pass these buttons through as HID usage as defined later. For

example, an extensible button could be used to teach the user how to program a button on the

remote control in Windows Media Center, start a program, or control home automation.

EXT

Button Space: Microsoft Optional

Icon: Determined by OEM.

Label: Determined by OEM.

Button code: The following table provides the extensible button names and the corresponding

Windows mapping.

Button name Button code mapping

EXT0 50

EXT1 51

EXT2 52

EXT3 53

EXT4 54

EXT5 55

EXT6 56

EXT7 57

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

29

Button name Button code mapping

EXT8 58

EXT9 128

EXT10 129

EXT11 111

First press action: Generates EXTn HID message in the Media Center Vendor Specific

Collection (page 0xFFBC, usage 0x88).

Second press action: Repeats message.

Auto-repeat: No

DVD Buttons - Recommended, Optional, or Reserved

This section describes DVD buttons that provide additional control for playing a DVD in Windows

Media Center. The recommended button is listed first, followed by the optional and reserved

buttons.

DVD Menu

Button space: Microsoft Recommended

Icon:

Label: DVD MENU

Button code: 36

First press action: Displays the DVD menu.

Second press action: Takes no action.

Auto-repeat: No

DVD Angle

Button space: Microsoft Optional

Icon:

Label: DVD ANGLE

Button code: 75

First press action: Changes the camera angle when watching a DVD. This button appears on

some but not all remote controls.

Second press action: Continues to cycle through the available DVD camera angles for the

current DVD.

Auto-repeat: No

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 30

DVD Audio

Button space: Microsoft Optional

Icon:

Label: DVD AUDIO

Button code: 76

First press action: Plays the next available audio track on a DVD.

Second press action: Repeats first press action.

Auto-repeat: No

DVD Subtitle

Button space: Microsoft Optional

Icon:

Label: SUBTITLE

Button code: 77

First press action: Displays the DVD subtitles when watching a DVD.

Second press action: Repeats first press action.

Auto-repeat: No

DVD Top Menu

Button space: Microsoft Reserved

Icon: To be determined.

Label: DVD Top Menu

Button code: 67

First press action: To be determined.

Second press action: To be determined.

Auto-repeat: No

Eject

Button space: Microsoft Reserved

Icon:

Label: EJECT

Button code: 40

First press action: Ejects a DVD drive.

Second press action: Repeats first press action.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

31

Auto-repeat: No

Miscellaneous Buttons - Recommended or Optional

This section describes miscellaneous buttons that control additional functionality in Windows

Media Center. The recommended button is listed first, followed by the optional button.

Zoom

Button space: Microsoft Recommended

Icon:

Label: ZOOM

Button code: 39

First press action: Toggles between various aspect modes in TV.

Second press action: Repeats first press action.

Auto-repeat: No

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 32

Print

Button space: Microsoft Optional

Icon:

Label: PRINT

Button code: 78

First press action: Prints an item in Windows Media Center by using a program.

Second press action: Repeats first press action.

Auto-repeat: No

Miscellaneous Buttons - Reserved

This section describes reserved buttons that are defined now to allocate space in the button map

and IR stack. At this time, buttons in this class do not have functionality implemented in Windows

Media Center. However, the system message is produced.

These functions might be in future releases. While we welcome developers to use these

messages in their products, future uses of these buttons by Microsoft products might cause

incompatibility with preexisting uses. No specifications are available for intended Microsoft use of

these buttons. Future use of these buttons by Microsoft might be incompatible with any

implementations generated before the intended use is specified.

Display

Button space: Microsoft Reserved

Icon: Determined by OEM.

Label: DISPLAY

Button code: 79

First press action: Generates OEM2 HID message in the Media Center Vendor Specific

Collection. This button is intended to control the front panel display of home entertainment

computers. When this button is pressed, the display could be turned on or off, or the display

mode could change.

Second press action: Repeats message.

Auto-repeat: No

Kiosk

Button space: Microsoft Reserved

Icon: To be determined.

Label: KIOSK

Button code: 106

First press action: To be determined.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

33

Second press action: Repeats message.

Auto-repeat: No

Additional Buttons for Remote Controls for ISDB-T Market –
Recommended, Optional and Reserved

This section describes buttons that are unique to the ISDB-T market in Japan.

The reserved buttons are now defined to allocate space in the button map and IR stack. At this

time, buttons in this class do not have functionality implemented in Windows Media Center.

However, the system message is produced. These functions might be in future releases. While

developers can use these messages in their products, future uses of these buttons by Microsoft

products might cause incompatibility with preexisting uses. No specifications are available for

intended Microsoft use of this button. Future use of this button by Microsoft might be incompatible

with any implementations generated before the intended use is specified.

10

Button space: Microsoft Recommended

Icon: ―10‖

Label: Determined by OEM (locale specific).

Button code: 62

First press action: Changes channel to channel 10.

Second press action: Repeats first press action.

Auto-repeat: No

11

Button space: Microsoft Recommended

Icon: ―11‖

Label: Determined by OEM (locale specific).

Button code: 63

First press action: Changes channel to channel 11.

Second press action: Repeats first press action.

Auto-repeat: No

12

Button space: Microsoft Recommended

Icon: ―12‖

Label: Determined by OEM (locale specific).

Button code: 64

First press action: Changes channel to channel 12.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 34

Second press action: Repeats first press action.

Auto-repeat: No

Channel Input

Button space: Microsoft Recommended

Icon: Determined by OEM.

Label: Determined by OEM (locale specific).

Button code: 66

First press action: Brings up UI that allows users to enter three-digit channels.

Second press action: Repeats first press action.

Auto-repeat: No

Sub Audio

Button space: Microsoft Recommended

Icon: Determined by OEM

Label: Determined by OEM

Button code: 45

First press action: Brings up a menu that allows users to select different audio.

Second press action: Repeats first press action.

Auto-repeat: No

Remarks: Selects the audio language.

Network Selection Button

Button space: Microsoft Optional

Icon: Network

Label: NETWORK

Button code: 44

First press action: Cycles between broadcast types.

Second press action: Repeats message.

Auto-repeat: No

Remarks: Selects between satellite/cable and terrestrial TV.

Video Selection Button

Button space: Microsoft Optional

Icon: Video

Label: Video

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

35

Button code: 97

First press action: Once the command code is pressed, Windows Media Center checks if the

current transport stream (channel) contains more than one video stream. If a channel has only

one video stream, the button does nothing because the user cannot select anything.

If the channel contains more than one video stream, the "Now Playing" TV context menu is

displayed, focused on the Video pane. This Video pane displays all of the sub-video streams and

allows users to navigate to or select a different video. Depending on the information in the video

stream, they may be labeled simply as "Video1" and "Video2", or labeled more specifically, such

as "High Resolution" and "Low Resolution" as is sometimes used in satellite broadcasting.

Second press action: Repeats action.

Auto-repeat: No

Channel Info

Button space: Microsoft Reserved

Icon: To be determined.

Label: To be determined.

Button code: 65

First press action: To be determined.

Second press action: Repeats message.

Auto-repeat: No

Blu-ray Button - Reserved

This section describes a button that was added to support OEMs developing their own Blu-ray

program for Windows Media Center. This functionality is not implemented in Windows Media

Center. However, the system message is produced. No specifications are available for intended

Microsoft use of this button. Future use of this button by Microsoft might be incompatible with any

implementations generated before the intended use is specified.

BD Tool

Button space: Microsoft Reserved

Icon: To be determined.

Label: To be implemented per Blu-ray requirements.

Button Code: 120

First press action: To be determined.

Second press action: To be determined.

Auto-repeat: No

Feedback LED

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 36

It is highly recommended that the remote control provide the user with visual feedback that a

button has been pressed. This feedback can be displayed using an LED (of any color) that is

connected to the output circuitry for the remote control.

Backlight

Microsoft recommends including backlight functionality in the remote control because the user

might be using the Windows Media Center remote control in a dark room. At a minimum, the

transport and navigation controls should be illuminated by pressing a backlight button. The

backlight button should be on the side or face of the remote control. If the button is placed on the

face of the remote control, Microsoft recommends that the backlight button glow in the dark to

help the user locate the button easily. Also, pressing any button on the remote can enable

backlighting.

Additional Navigation Methods

The Windows Media Center interface is a tabbed interface and usability tests show that it works

best with discrete arrows and an OK button.

An OEM must support the discrete directional arrow interface in an approved manner (to include

discrete physical buttons, round disk configuration with artwork-indicated discrete direction, or

capacitance-driven discrete arrows).

The OEM has the option of adding any additional methods of navigation to the remote control .

Additional Audio/Video Control Methods

Other audio/video control methods can be implemented on a Windows Media Center remote

control, such as a jog wheel to control volume. If an alternative method is used, the control must

have the ability to transmit one and only one button press at a time in order to pass certification.

Multifunction Remote Controls - Highly Recommended

In addition to controlling Windows Media Center computers, multifunction remote controls can

control TV power and volume. No other devices or TV button functionality can be supported by

this remote control.

Multifunction remote controls:

 Must have a separate Power button for the TV power.

 Must be designed so that after the TV button is configured, the volume buttons must be

configured for TV volume.

 Must support IR learning.

 May contain a universal database and may contain more than one brand.

 Must be designed so that mute functionality cannot be remapped to the TV. (This ensures that

closed captioning is correctly displayed in Windows Media Center.)

 Should be set up through a 10-foot extensibility application.

Remote Control for OEM Bundled PC and Consumer Electronic Equipment

When an OEM bundles a computer with other consumer electronic equipment, the OEM can

create a Windows Media Center remote control that controls these multiple devices from the

same manufacturer. The remote control is limited to use with only that brand.

These types of remotes:

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

37

 Are required to have all of the required Windows Media Center buttons to qualify as a Green

Button logo device. The remote must be configured out-of-the-box as a Windows Media Center

remote. Other functions for consumer electronic devices can be available by switching modes.

 May contain a universal database that may contain more than one brand.

Windows Media Center Universal Remote Controls

Windows Media Center remote controls that manage more than the TV power and volume are

considered universal remote controls.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 38

To qualify as a Windows Media Center universal remote control, the following are required:

 The Windows Media Center Green Start button must be persistent in all modes of the universal

remote control. Regardless of the mode that is currently selected, pressing the Green Start

button must always take the user to the Start menu in Windows Media Center.

 The Windows Media Center Green Start button cannot be overloaded and must always take the

user to the Start menu in Windows Media Center.

 To be certified under the Windows Logo Program, the remote control must have all of the

required Windows Media Center buttons either on the remote control as hardware buttons or on

the screen as software buttons. The remote must be configured out-of-the-box as a Windows

Media Center remote, and other functions for other devices can be available in other modes.

 When in Windows Media Center mode, all required buttons must be directly available. All labels

and/or icons must reflect the function that the button provides in Windows Media Center.

 The remote control must be programmable or support learning with an IR database.

 The remote control must have support for a wide range of manufacturers. It cannot support just

one brand or device manufacturer.

 The universal remote control mode must be readily apparent and visible.

 If switches or sliders are used, the end user must be able to determine easily the current remote

control mode.

 Transport controls cannot be overloaded with other functions.

 Windows Media Center shortcut buttons must maintain Windows Media Center labels in primary

positions. Icons cannot be altered or added on the physical shortcut buttons to reflect additional

functionality.

The following are recommended and Microsoft strongly encourages all manufacturers to support

these recommendations:

 Microsoft strongly recommends that the universal remote control setup be done through a 10-foot

extensibility program.

 Slide or manual switches for the universal modes are strongly discouraged. If switches or sliders

are used, the end user must be able to determine easily which mode the remote control is in.

 Navigation controls and the OK button must function as navigation controls in all modes.

 Additional buttons added to the remote for universal functionality should be grouped logically with

other buttons that provide similar functionality.

TV standards and Windows Media Center Remote Controls

For regions where Windows Media Center provides native support for TV broadcast standards,

the remote controls must meet the general remote control requirements in this document.

In those regions where TV has a secondary 10-foot application, the remotes must follow the

guidelines defined below.

If you are distributing a secondary 10-foot TV application on a Windows Media Center computer,

you must distribute a remote control that meets the requirements in this document. In addition,

manufacturers have an option to create a Windows Media Center remote control that supports a

secondary 10-foot TV application. This remote control must have the Windows Media Center

Green button and can have a secondary 10-foot TV application launch button. The buttons for the

secondary 10-foot application can use either of the recommended IR protocols or the protocol

currently used in the secondary 10-foot TV application.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

39

Windows Media Center Two-Way Remote Control with Compatible Auxiliary Display for
Windows SideShow

An OEM can build a two-way remote control with an auxiliary display for controlling music

playback, guiding navigation and other features. A Windows SideShow gadget for Windows

Media Center will support this functionality. For more information, contact

ssremote@microsoft.com.

Extender for Windows Media Center Remote Controls

Media Center Extender technology can provide full access to personal content stored on Digital

Living Network Alliance (DLNA)-compatible digital media servers. For more information about

remote controls for these products, contact: mcxprtnr@microsoft.com.

Remote Address

The IR Protocols support multiple remotes and multiple Windows Media Center computers in the

same room. The total number of separate remote control addresses is eight. The user should be

able to change the address of the remote with a few simple keystrokes.

On the remote control, the end user simultaneously presses the DVD MENU button plus a

numeric button [1-8] for more than three seconds to change the remote control address. To

indicate that the remote control address was changed successfully, the LED will blink twice. It is

strongly recommended that all Windows Media Center remote controls support addressability.

Alternatively, the remote control address can also be changed by pressing the DVD MENU or

MORE INFO button and a transport button for longer than three seconds. The transport buttons

are Stop, Record, Pause, Rewind, Play, Fast Forward, Skip Back, and Skip Forward, and these

buttons map to 1 through 8 respectively.

Labels and Icons for the Remote Control

The remote control can be icon-based only, label-based only, or have both icons and labels.

The following implementations are required:

 If using icons, the icons can be placed either above, below, or on the button.

 If using labels, the label placement must be consistent within button clusters.

In addition to the preceding required elements, Microsoft strongly recommends that:

 If you are designing a new remote control, make sure that the buttons are large enough so that

the icons can be located on the buttons.

Windows Media Center Keyboards

The purpose of a Windows Media Center keyboard is to enhance the user experience by giving

the user all the buttons and functions they need in one easy-to-use device.

The keyboard does not replace the requirements to distribute a Windows Media Center remote

control with a Windows Media Center computer. When you are designing a Windows Media

Center keyboard, Microsoft strongly recommends placing the characters above the number keys.

The Green Start button on a Windows Media Center keyboard must meet the same requirements

that are specified for a standard Windows Media Center remote control.

Mouse functionality can be integrated into the keyboard.

The following Microsoft Required buttons must appear on a Windows Media Center keyboard:

 Green Start button

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 40

 Volume Up

 Volume Down

 Mute

 Channel Up

 Channel Down

 Play

 Pause or Play/Pause combo

 Stop

 Rewind

 Fast Forward

 Skip Forward

 Skip Backward

 More

The following Microsoft Optional buttons can appear on a Windows Media Center keyboard:

 Back

 Enter

 Left

 Right

 Up

 Down

 OK

 Guide

 Live TV

 Recorded TV

 Radio

 Numeric keypad

 Clear

 Enter

 *

 #

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

41

Green Start Button Requirements

The Green Start button is made up of a keycap and dome lens (referred to as the Green Start

button subassembly) and is implemented within a device housing that has a sloped edge (called

a chamfer).

The Green Start button is designed to provide an attractive and discoverable actuator to display

the Windows Media Center Start menu.

Figure 6: Illustration of top view and perspective view of the Green Start button for

Windows Media Center Technologies

These guidelines provide the details necessary to obtain a high-quality Green Start button

subassembly and to implement it on a Windows Media Center remote control or other device to

create a lasting, positive user experience for customers. Device manufacturers must purchase

the Green Start button subassembly from a certified supplier.

Key Logo License Agreement and the Green Start Button

When adding and implementing the Green Start button on a device, the device manufacturer

must adhere to the requirements specified in the Key Logo License Agreement for that device.

For more information or to get a copy of the Key Logo License Agreement for a device, contact

the primary Microsoft contact for the device specification.

Green Start Button Requirements

This section includes the Green Start button requirements. See the topic ―Sample Implementation

and Design Variations‖ later in this document for an example implementation and possible design

variations.

The Green Button function is governed by the Key Logo License Agreement and the Remote

Control Specifications section in this document.

Only one Green Start button can be implemented on a single device. If a second Windows key is

included, it must not be a Green Start button.

Green Start Button Must Meet Size Requirements of Device

The dome lens for the Green Start button can be manufactured in one of three authorized sizes:

11 millimeters (mm), 9 mm, and 6.6 mm.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 42

The authorized sizes for the Green Start button (11 mm, 9 mm, and 6.6 mm) refer to the diameter

of the dome lens and do not reflect the total size of a manufactured Green Start button

subassembly.

Figure 7: Illustration of the three different sizes in which the Green Start button can be

implemented (illustration is not to scale)

The size of the Green Start button that should be implemented on a device is determined by the

device type. To determine the button sizes that can be implemented on a particular device, refer

to the hardware specification for that device.

For example, if you are preparing to manufacture a remote control for Windows Media Center,

refer to the Remote Control Specification for Windows Media Center Technologies to find out

which size Green Start button should be included on the remote control.

Green Start Button Subassembly

The Green Start button subassembly is made up of two parts: the keycap and the dome lens. As

shown in Figure 8, the dome lens is made up of three layers. The dome lens adheres to the

keycap so that the Green Start button can withstand high levels of force that may occur during

regular use.

Figure 8: Illustration that shows the three layers of the dome lens

The keycap is manufactured in a clear material to better integrate with any device design and

color scheme. The keycap design includes an orientation feature to ensure that the Green Start

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

43

button is correctly oriented to the device axis when assembled. For more information, see the

topic "Green Start Button Must Be Correctly Oriented on the Device", later in this document.

The keycap has a ridge that surrounds it and helps to secure the dome lens. The ridge ensures

that the dome lens is centered on the keycap and also prevents the dome lens from being

dislodged easily by multidirectional force.

Figure 9: Illustration of subassembly with ridge and orientation features

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 44

Green Start Button Subassembly Must Be Obtained from a
Certified Supplier

To achieve the Microsoft standard of consistency and quality in the Green Start button

subassembly, device manufacturers must obtain the entire part from a certified supplier. Each

certified supplier must manufacture the Green Start button subassembly according to

requirements specified by Microsoft. The supplier that is certified to manufacture and distribute

the Green Start button subassembly is listed in the ―Resources‖ section later in this document

under the heading Certified Supplier.

For detailed drawings of the Green Start button subassembly that is provided by the certified

supplier, look in the ―Resources‖ section under the heading Art Files for Green Start Button

Subassembly. A STEP file and an Encapsulated PostScript (EPS) file is provided for each button

size.

Device Housing and Orientation

Design Requirements for Chamfer on Device Housing

The area on the device housing around the Green Start button assembly contains a sharp-edged

chamfer (or groove) that slopes down to the level of the keycap ridge.

Figure 10: Illustration of chamfer on device housing

The design requirements for the chamfer on the device housing vary and depend on the button

size. The following sections and diagrams illustrate the design and measurements for the three

authorized button sizes.

Device Housing Design for 11 mm Green Start Button

The chamfer on the device housing should measure 15.05 mm in diameter and 0.75 mm in

depth. The chamfer outer rim must be a sharp edge that is not rounded.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

45

Figure 11: Illustration showing device housing detail for 11 mm Green Start button

Device Housing Design for 9 mm Green Start Button

The chamfer on the device housing should measure 12.55 mm in diameter and 0.65 mm in

depth. The chamfer outer rim must be a sharp edge that is not rounded.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 46

Figure 12: Illustration showing device housing detail for 9 mm Green Start button

Device Housing Design for 6.6 mm Green Start Button

The chamfer on the device housing should measure 9.4 mm in diameter and 0.5 mm in depth.

The chamfer outer rim must be a sharp edge that is not rounded.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

47

Figure 13: Illustration showing device housing detail for 6.6 mm Green Start button

Green Start Button Must Be Correctly Oriented on the Device

As shown in Figure 14, the orientation of the Green Start button subassembly to the device

alignment axis must be held to +/- 1 degree when assembled. Also, the keycap ridge and lower

chamfer edge must be at the same height when the button is in the neutral position.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 48

Figure 14: Illustration of Green Start button correctly oriented to the device axis

The Green Start button is correctly oriented when the red portion of the Windows logo flag

appears in the upper-left corner when the device is upright. Refer to the device specification for

details on the correct orientation of the Green Start button. See Figure 15 for an example of a

Green Start button that is correctly oriented to the device axis on a remote control.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

49

Figure 15 Illustration of

alignment axis on remote

control with Green Start

button.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 50

Do Not Place Additional Device Features Within a Recommended
Proximity of the Green Start Button

No additional features, buttons, design details, graphics, or colors should be placed inside the

specified white space that surrounds the Green Start button on the device housing.

The specification for white space diameter is as follows:

 Recommended: 190% of Green Start button assembly diameter.

Figure 16: Illustration of a button layout that provides the recommended diameter of white

space surrounding the Green Start button on a remote control

Green Start Button Travel Must Fall Within a Recommended
Range

The keycap and dome subassembly must be positioned on the device housing so that the button

travel falls within a recommended range. The recommended range of button travel for a rubber

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

51

membrane is 0.5 mm-1.0 mm. For a dome or microswitch, the recommended button travel

distance is 0.3 mm-0.6 mm.

Figure 17: Illustration showing button travel distance parameters

Sample Implementation and Design Variations

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 52

Sample Implementation: 11 mm Green Start Button on Rubber
Membrane

One construction that can be used to implement the Green Start button is to place the keycap

and dome on a rubber actuation membrane. The rubber membrane must include an orientation

feature to align with the orientation feature on the underside of the keycap.

Alignment of the orientation features on the keycap and rubber membrane ensures that the

Green Start button subassembly is oriented to the device axis correctly. The following drawing

illustrates this type of construction.

Figure 18: Illustration of rubber membrane construction

Figure 19: Exploded view of rubber membrane construction

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

53

Design Variation: Green Start Button with Custom Keycap

If the Green Start button subassembly does not meet your device design requirements because

of incompatibility with device depth, switch type, or general device housing and design, a custom

keycap and subassembly can be constructed using the requirements that are shown in Figure 20.

While the ridge and dome dimensions shown in Figure 20 are required, the remaining attributes

of your custom keycap are up to you.

All custom keycap designs for the Green Start button subassembly must be manufactured and

obtained through a certified supplier. The supplier that is certified to manufacture and distribute

the Green Start button subassembly is listed in the ―Resources‖ section under "Certified Supplier

for Green Start Button Subassembly‖, later in this document.

Figure 20: Illustration showing an example custom keycap with a ridge and poured dome

lens

Design Variation: Glowing Translucent Chamfer Insert

Optional design variations can be implemented on the device housing to add emphasis to the

Green Start button. For example, adding a transparent chamfer piece with a backlight around the

Green Start button can create a glowing chamfer effect. The recommended color for backlighting

the transparent chamfer is green.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 54

Figure 21: Illustration of a translucent chamfer insert when it is not glowing

Figure 22: Illustration of a translucent chamfer insert when it is glowing

Design Variation: Membrane-Based Remote Control

Some Windows Media Center PCs that are laptop computers are paired with membrane-based

remote controls (often referred to as ―credit-card size‖ or ―thin-profile‖ remotes) for increased

portability. The construction and design of the thin-profile remote requires a different Green Start

button design than the one described in this specification. As shown in Figure 23, the membrane-

based remote requires a screen-printed Green Start button instead of a keycap and dome

implementation.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

55

Figure 23: Illustration of a membrane-based remote control with a 9 mm Green Start

button that is printed directly on the top surface

Figure 24: Visual treatment for the Green Start button image on a membrane-based remote

control

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 56

An Adobe Illustrator file and an Encapsulated PostScript file of the authorized image for use in

printing on the top surface of the remote control are provided in the ―Resources‖ section under

Art Files for Green Start Button for Membrane-based Remote Control. In this artwork, line A

represents the edge of the button surface, and line B represents the edge of a simulated

chamfer. Line B is optional and is used to mimic the keycap and dome implementation more

closely. If you apply this artwork to a domed button surface, the green portion of the artwork

should extend across the domed surface of the button, while the surrounding line work should

appear outside of this domed or active surface. The Green Start button artwork that is provided

can be scaled to any size between 6.6 mm and 11 mm. However, the Green Start button image

cannot be smaller than the largest button image for any other buttons that appear on the remote

control.

Alternate device design implementations must be reviewed and approved by Microsoft

Corporation. For more information, please contact the primary Microsoft contact for that device

specification.

Design Variation: Screen-Based Green Start Button

A screen-based Green Start button can be used for devices with a small digital display instead of

buttons. For example, a remote control might have a digital touch-screen instead of buttons. The

image of the Green Start button must not be smaller than 9 mm on the screen so that the end

user can find the Green Start button quickly.

Figure 25: Illustration of a screen-based Green Start button (illustration not to scale)

Artwork for use in a screen-based implementation can be found in the file provided in the

―Resources‖ section under Art File for Screen-based Green Start Button. Alternative device

designs must be reviewed and approved by Microsoft Corporation. For more information, please

contact the primary Microsoft contact for that device specification.

Resources

Certified Supplier for Green Start Button Subassembly

Company The Auld Company

Address: 180 Outerbelt Street

Columbus, Ohio 43213-1527

USA

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

57

Company The Auld Company

Fax: (614) 892-2929

back-up fax (614) 755-2329

Customer Service: Eva Crompton

Phone: (614) 755-2853 extension 2120

E-mail: ecrompton@auldco.com

Sales Representative: Dan Auld

Phone: (614) 755-2853 extension 2200

E-mail: dauld@auldco.com

Art Files for Green Start Button Subassembly

Files for 11 mm button:

 MCB_11mm_Universal_keycap_ASM.stp

 MCB_11mm_Universal_keycap_ASM.eps

Files for 9 mm button:

 MCB_9mm_Universal_keycap_ASM.stp

 MCB_9mm_Universal_keycap_ASM.eps

Files for 6.6 mm button:

 MCB_6_6mm_Universal_keycap_ASM.stp

 MCB_6_6mm_Universal_keycap_ASM.eps

Art Files for Green Start Button for Membrane-Based Remote
Control

 Adobe Illustrator file: Printed_Thin-profile_Button_Art_CMYK.ai

 Encapsulated PostScript file: Printed_Thin-profile_Button_Art_CMYK.eps

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 58

Art File for Screen-Based Green Start Button

 Portable Network Graphics (PNG) file: Screen_Button_Art_RBG.png

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

59

Receiver/Transceiver Specifications
This section provides information about building receivers and transceivers that receive input

from a control and convert them into actions to control Windows Media Center and a set-top box

in the case of a transceiver.

Overview of IR Receiver Options

Deciding what type of infrared receiver to build for Windows Media Center can be confusing.

There are several different options available:

 Options that use Microsoft provided Hardware designs and Microsoft provided software.

 Options that use Microsoft provided software with third-party hardware designs.

 Options that use third-party software and third-party hardware.

 Each option has different tradeoffs, including things such as:

 BOM cost

 Hardware design cost

 Software design cost

 Functionality provided

 Risk

Additionally, not all options are suitable for all locales. Finally, many of the options are only

suitable for Windows 7 and may not be distributed with any previous Windows Media Center

products (such as Windows Vista or Windows XP Media Center Edition).

This section discusses these options, tradeoffs, and when specific options are allowable and not

allowable.

Concepts

IR Protocol

The IR protocol defines how a series of infrared light flashes can be used to encode a remote

control keypress, a keyboard event, or a mouse move. Windows Media Center supports several

different protocols, including, but not limited to, Philips RC-6, SMK QP and an internal protocol

called MCIR-2 which is used for the Windows Media Center infrared keyboard.

In designing your hardware, it is important to realize that, although RC-6 and SMK QP are the

most common for an IR receiver, your receiver needs to do more than receive RC-6 and SMK

QP. You also need to:

 Process IR input with any protocol that is supported by Windows Media Center. Software

decoding is necessary.

 Implement IR learning.

 Implement IR emitting.

 Wake on certain IR signatures (power key wake).

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 60

Hardware Decoding Versus Software Decoding

In designing an IR receiver, there are two options: decoding the IR protocol in hardware and

decoding the IR protocol in software.

 Decoding in hardware requires the details of the IR protocol to be stored in the hardware, either

in firmware or in discrete logic. The hardware is hard-wired for a specific protocol or a set of

protocols. Any change in the protocol or in the behavior of the protocol requires a change to the

hardware.

 Decoding in software allows the details of the IR protocol to change with a software patch. In this

case, the hardware returns the timing of the IR flashes to the software and the software interprets

the protocol and converts the flashes into a keypress.

In order to do software decoding of protocols, you need to use a legacy device, an emulator

device, or a port/class device.

In almost all cases, Windows Media Center requires software decoding of the protocol.

Multiple Software-Based Protocol Support

Because Windows Media Center supports decoding of the IR protocol in software, Windows

Media Center can receive input from multiple types of remotes using the same hardware. This

means, for instance, that the same receiver can receive input from a Philips RC-6 remote and

also from a Windows Media Center IR Keyboard

Run Length Coding (RLC)

Run Length Coding (RLC) is the method used by Windows Media Center to communicate

infrared information from IR receiver to the software decoders. RLC communicates IR pulses as

a set of durations. These numbers are either duration on, which is the time that a (modulated) IR

signal is present, or duration off, which is the time that there is no IR signal present. The numbers

are represented in a count of microseconds, with a positive number indicating that the IR signal is

present and a negative number indicating that the IR signal is absent.

So for this (demodulated) IR signal, which represents a single RC-6 keypress, the corresponding

RLC is as follows:

2656 -888 444 -444 444 -444 444 -888 444 -888 1332 -888 444 -444 444 -444 444 -444 444 -444 444 -444 444 -444 444 -

444 444 -444 444 -444 444 -444 888 -444 444 -444 444 -444 444 -888 444 -444 444 -444 444 -444 444 -444 888 -888 444 -

444 444 -444 444 -444 444 -444 444 -444 444 -444 444 -444 444 -444 444 -444 444

Figure 26: Demodulated IR signal

This means that the signal was high for 2656 usec, then low for 888 usec, then high for 444 usec,

and so on. The one piece of information missing here is the carrier frequency. Depending on the

situation that the RLC was used in, the carrier is either implied, explicit, or undefined.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

61

It is important to recognize that your hardware does not need to send RLC to the software

decoders in this exact form. There is a piece of software between your hardware and the

software decoders that can convert the IR from some hardware-specific form into RLC. This

software is called the ―Port Driver‖.

Port Driver/Class Driver Model

Windows Vista and Windows 7 supports the concept of an IR Port Driver/Class Driver model. In

this model, there are two drivers installed in the PC. One is a class driver, which is provided by

Microsoft. The class driver, called circlass.sys, can communicate with port drivers, and can also

decode IR protocols. The port driver is typically provided by the hardware manufacturer, and can

communicate to the hardware and send the IR information, in RLC form, up to the class driver.

IR Emitting

In addition to receiving IR, Windows Media Center must also transmit IR. IR is used to control

cable boxes and satellite boxes, which are referred to collectively as set-top boxes (STBs).

Essentially, the Windows Media Center PC acts like a cable-box remote control and transmits the

IR necessary to control the cable box. This is needed to record TV shows when the user is not

present, and to change the channel on the cable box if the user is using Extender for Windows

Media Center technology for another room.

The terms ―IR Blasting‖. ―IR Emitting‖, ―Transmitting IR‖, and ―Sending IR‖ are all used to

describe this process. These terms are synonymous.

IR Database

An IR database is stored within the Windows Media Center PC, which can be used to control an

extensive list of set-top boxes (STBs). For each STB manufacturer there is a list of IR codesets

that is unique to them. These are generally stored as RLC so Windows Media Center transmits

this information to control the STBs.

IR Learning and Parse-and-Match

IR Blasting, Learning, and Parse-and-Match must use the Windows Media Center IR Database.

Windows Media Center is unable to take advantage of any other IR databases, particularly those

stored inside of existing IR hardware solutions.

To control STBs, Windows Media Center must know which IR codes to transmit. There are three

ways that Windows Media Center can discover which codes to transmit:

 Choose from a list. The user has the option to choose a manufacturer and code set number

from amongst the IR database provided. This is very error prone because, a brand of STB might

use 5 different IR code sets depending on the STB model. The user would have to select the

manufacturer, and then manually try each of the 5 code sets until they found one that worked.

 Parse-and-Match. With the remote control, the user can use Parse-and-Match to identify the

codeset. Windows Media Center prompts the user to press a key on the remote control, for

instance the ―zero‖ button. Windows Media Center receives the RLC for the IR from the IR

hardware and compares it to all the codesets in the entire database. When Windows Media

Center finds a matching codeset, it uses that codeset to control the cable box. This allows the

user to find the correct codeset without the overhead of trying each codeset until a working set is

found. Typically, Parse-and-Match should find the users‘s codeset with 1-3 keypresses.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 62

 IR Learning. If Windows Media Center is unable to identify the user‘s remote control using

Parse-and-Match, then the user needs to go through the IR learning process. In IR learning,

Windows Media Center captures the RLC for each keypress and stores it in a database.

Windows Media Center needs at least two samples of each key to complete IR learning.

Windows Media Center also needs to measure the carrier frequency for the remote control.

Note Windows Media Center does not support learning toggle bit remotes.

Long-Range Receivers and Wide-Band Receivers

Windows Media Center IR receivers need to have two different light-detecting components. One

of them (long-range) is used most of the time. The other one (wide-band) is only used for IR

Learning.

Long Range Receiver:

 BPF, AGC, and demodulator inside receiver hardware.

 Receive IR Data at 10 meters on center of receiver and 5 meters off center at a distance of 10

meters.

 Returns IR waveform envelope to software for software decoding of IR signal.

 Used for normal day-to-day operation and also for one-time setup of STB control.

Learning Receiver:

 Returns modulated signal to hardware so hardware or port driver can measure carrier frequency.

 Optimized for a distance of 5 centimeters.

 Returns IR waveform envelope to software for software decoding of IR signal.

 Used only for one-time setup of STB control.

Sleep (formally Power) Key Wake

Windows Media Center IR receivers need to support remote wake using a Sleep key on the

remote control. This means that, if the PC is in a low power state, the user can use the Sleep or

Wake button on the remote control to bring the PC into a higher power state. This is a

requirement for all Windows Media Center IR receivers.

The Remote Control Functionality Needed

When designing a system, you have multiple choices about the level of remote control

functionality that you can provide to users. This decision will be based on the type of PC that is

being built, the peripherals that are being distributed with the PC, the country/region that the PC

is being distributed in, and the level of functionality desired by the system designers.

Transmit/Receive Devices

Transmit/Receive devices provide the full set of IR functionality for users. They are able to

receive IR input from a remote control and they provide Power Key Wake functionality for the

users. In addition to this, they provide IR learning, remote identification using parse-and-match,

and IR emitting functionality to control set-top boxes. In many countries or regions, a

transmit/receive device is required for most Windows Media Center systems.

Transmit/Receive devices are required when the following three conditions are true:

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

63

 The system is a desktop system.

 The system includes a tuner.

 The tuner is capable of supporting set-top boxes. This depends on the video standard used and

situation in the country/region where the system is being distributed to.

Transmit/Receive devices are allowed, but not required in other situations, such as laptop

systems, and systems without a tuner device unless a remote is distributed with the system, then

receivers are required.

Receive-Only Devices

Receive-only devices are devices that accept input from a remote control and are able to wake

on the Sleep key, but are unable to do IR emitting. Because of the more limited set of

functionality, receive-only devices are cheaper to produce, but they are also only able to

distribute in a limited subset of PC systems.

Receive-only devices are useful when remote input functionality is desired, but the three

conditions above don‘t require a transmit/receive devices. This includes, but is not limited to,

these three common examples:

 Laptop systems.

 Systems without a tuner.

Receive-only devices can be IR based or RF based.

How Should You Build Your Device

After you decide what functionality your receiver needs, you will need to decide what hardware

and software architecture to use when building your device. This decision should be based

mostly on cost and risk, but can also be based on the level of functionality required.

Legacy Devices - Beanbag/Snowball/Snowflake

Before Windows Vista, legacy devices were the only option for building IR hardware. Microsoft

provided the hardware reference designs, the firmware, and the software drivers. ODMs are

required to use all of these and to follow the designs exactly. Because the design work is done

and the software is provided, this has the cheapest design cost for ODMs. This also makes this

the least risky option. However, because ODMs need to follow designs exactly, the BOM cost for

this is fixed and moderately high. Legacy devices are the only option if OEMs are building

systems that run Windows XP.

To build a legacy device, ODMs need to acquire the device schematic from Microsoft and build

the device following the schematic and BOM requirements. Testing the hardware is possible

using the drivers provided with Windows XP Media Center Edition and later versions of Windows

operating systems with Media Center. The software for legacy devices is distributed with

Windows XP Media Center Edition and later versions of the Windows operating system with

Media Center so no additional software download/install is necessary for customers.

Legacy Device Summary

Design Cost Low

BOM Cost High

Risk Low

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 64

Legacy Device Summary

Support for ODM customization Low

Operating System Support Windows XP or later versions of Windows

with Media Center

Connection USB Only

Emulation Devices

―Emulation devices‖ are devices which emulate the firmware of the legacy devices. For these

devices, the software is provided by Microsoft, but the hardware and firmware design is entirely

up to the hardware developers. Because the software is entirely provided by Microsoft, the

hardware must communicate with the software in a fixed format. This option allows ODMs to

focus on cost-reducing the hardware without incurring the cost of producing any software.

To build an emulation device, the OEM has to design and build the hardware according to the IR

Receiver Hardware Requirements noted in this document. OEMs must program the firmware

Wake key when the PC is in low power state. OEMs will not need to provide any software drivers.

The software for legacy devices is distributed with the Windows operating system, so no

additional software download/install is necessary for customers.

Emulation Device Summary

Design Cost Moderate to High

BOM Cost Up to ODM

Risk Low to Moderate

Support for ODM customization Low to Moderate

Operating System Support Windows Vista or later

Connection USB Only

Port Driver Devices

Port driver devices allow the hardware manufacturer almost complete freedom in designing their

hardware. The cost of the freedom is that the manufacturer must provide a piece of software – a

port driver – that can communicate with the hardware. The software is moderately difficult to

write, but it allows the OEM freedom to do things such as:

 Connecting via busses other than USB

 Integrating the IR receiver into other peripherals

 Adding additional functionality into the device

Port driver devices give the OEM the greatest degree of freedom, but they incur the greatest

amount of risk and the greatest up-front design cost. In many cases, building a port-driver device

is the best choice, but the decision should not be taken lightly.

To build a port driver device, the OEM has to design and build the hardware according to the IR

Receiver Hardware Requirements. OEMs need to design the firmware to communicate with the

PC using whatever communication they desire. OEMs need to write a port driver that runs on the

PC and communicates with the hardware. They need to program the firmware to respond to the

Wake key when the PC is in low-power state. Because the OEM is responsible for writing the port

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

65

driver, they need to determine the best course for delivering the port driver to end customers.

This may involve a driver disc that is distributed with the hardware or a software download.

Port-driver Device Summary

Design Cost High

BOM Cost Up to ODM

Risk Moderate to High

Support for ODM customization Moderate to High

Operating System Support Windows Vista or later

Connection Any

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 66

RF Receivers

These devices use Radio Frequency (RF) instead of IR to communicate the keypress

information. The easiest way to build these is to use a USB connection and write the firmware to

make the USB receiver appear to the operating system as a HID device.

To build an RF receiver device, the ODM needs to design and build the hardware. If the

hardware appears as a HID device, they can use the in-box HID drivers. If the hardware does not

appear as a HID device, they need to design and distribute the software drivers. They need to be

aware of and account for the limitations below in the section ―HID Device Limitations‖.

RF Receiver Device Summary

Design Cost Moderate

BOM Cost Up to ODM

Risk Moderate

Support for ODM customization Moderate

Operating System Support Windows XP Media Center Edition and later

Connection Any (USB preferred)

IR HID Devices

IR HID devices decode the IR protocol in hardware and produce keystrokes (HID reports)

directly.

IR HID Device Summary

Design Cost Moderate

BOM Cost Up to ODM

Risk Moderate

Support for ODM customization Moderate

Operating System Support Windows XP Media Center Edition and later

Connection Any (USB preferred)

More Complicated Receiver Examples

In addition to the basic device types above, it is possible to build more complicated receivers.

These receivers appear very desirable at first glance, but they incur a great cost in terms of

design cost, BOM cost, and risk.

RF Receivers – Transmit/Receive

These devices combine an RF remote with the ability to transmit IR. To do this, the OEM would

basically take an existing IR transmit/receive device and add the ability for RF support. In order to

control a set-top box it is not possible to completely remove the IR reception hardware from your

device because it is required for Parse-and-Match or Learning functionality.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

67

The hardware for this device would be very expensive. It would cost as much as an IR device

plus the additional cost for RF support. Because Windows XP doesn‘t support port driver devices,

you would need to build a legacy device on a board with a USB hub chip and an RF receiver.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 68

Two-Way Remote Devices

Two-way remote devices are devices where the communication between the remote control and

the receiver goes in two directions. So, for instance, an LCD on your remote could display the

currently playing song. In many ways, this is similar to the above item ―RF receivers –

transmit/receive‖ in that the device is expensive. This device would need to be a full function one-

way receiver plus the added cost of the two-way protocol.

The hardware for this device would be very expensive. It would cost as much as an one-way IR

device plus the additional cost for two-way support. Because Windows XP doesn‘t support port

driver devices, you would need to build a legacy device on a board with a USB hub chip and a

second device for the two-way functionality.

Connecting Your Receiver to the PC

If you are building a legacy or emulator device, you need to connect your device using USB. If

you are building a port driver device, you have more freedom to decide how to connect your

receiver to the PC. However, there are several caveats which make several choices expensive or

impractical.

USB

This is the most common way to connect a device to the PC. It is most likely to work successfully

and incurs the least risk.

IEEE 1394

1394 is possible, but incurs risk due to the untested nature of this scenario. 1394 may not allow

the wake from remote feature.

PS/2

Using a ps/2 connection could work, but there may not be any advantage to this over USB. This

would require a port driver on the PC. Making an IR receiver appear to the PC as a keyboard is

not possible because existing keyboard drivers do not contain scan code mappings for Windows

Media Center-specific keys.

Serial Port/Parallel Port

This would require a port driver on the PC. It would require an out-of-band signal to signal

wakeup to the PC when the user presses the Sleep button on the remote. Because serial ports

and parallel ports are fairly old technology, the likelihood of colliding with existing devices and

software is fairly high. A large amount of integration testing would be necessary to ensure

compatibility.

Super-IO Chip

Putting IR functionality onto a Super-IO chip is very desirable from a cost perspective for PC

companies. This will require a port driver to make it work.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

69

Integrated with TV Tuner (PCI or USB)

Integrating IR transceiver functionality with a PCI or USB tuner is very desirable from a cost

perspective. It will require a port driver to make it work.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 70

Bluetooth

To build a Bluetooth remote, you would basically be building a Bluetooth keyboard in a remote

control form factor. This device needs to produces the proper HID codes and will have the same

limitations outlined in the section ―HID Device Limitations‖ below.

Things to Remember When Building Your Device

Note the following before you finalize your decision.

Wake from Remote

Wake from remote is the required feature that allows the user to put their PC to sleep using the

Sleep button on their remote and then wake it up again using the Sleep button on their remote.

This will have several effects on your hardware design:

 It implies that your hardware can draw current when the PC is asleep or off. This is necessary

because your hardware needs to watch for and act on the Sleep button.

 It is the one case where your hardware needs to decode the two Media Center IR protocols in

order to wake the system (as described in this document).

 It should ideally be field-programmable so that a given manufacturer could have their PC wake

with the Sleep button on one protocol, and another manufacturer could have their PC wake with

the Sleep button on another protocol

If you use a legacy device, this work is included in the Microsoft-provided design.

Emitter Detection

If you support IR blasting, you need to support an ―Emitter Detection‖ feature. This means that

your hardware/driver must be able to detect the presence of an IR emitter plugged into an emitter

jack.

If you use a legacy device, this work is included in the Microsoft-provided design.

Two Receivers – Long Range and Wide Band

If your hardware supports IR emitting, it needs two IR receivers: a long-range receiver and a

wide-band receiver. The long-range receiver demodulates in hardware, is centered on a

particular frequency, and is designed to work ten meters away from the remote. The wide-band

receiver doesn‘t demodulate in hardware, may not be centered on a particular frequency, and is

designed to work five centimeters away from the remote.

If you use a legacy device, this work is included in the Microsoft-provided design.

Carrier Counting

When using the wide-band receiver, your hardware and/or port driver must be able to return the

carrier frequency of the IR signal to the class driver. This does not need to be an instantaneous

measurement – it merely says ―for the last sample, the carrier frequency was about X KHz‖. This

can most easily be done by counting the number of leading edges in a given signal and dividing

the time that the demodulated signal is high by the number of leading edges.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

71

If you use a legacy device, this work is included in the Microsoft-provided design.

Not Only RC6 and SMK QP Protocols

The IR receiver that you‘re building needs to receive more than MC RC-6 and the MC QP

protocols. Because the protocol is decoded inside of Microsoft-provided drivers, your receiver

and your port driver don‘t actually need any details about these protocols. The only place you

need to know about these protocols is to implement the wake-from remote function.

Windows Media Center will not be able to logo a receiver that only receives MC RC-6 and MC

QP protocols.

Addressable Remotes

Remote controls need to be addressable. This is useful in situations where there are two

Windows Media Center computers in a room. For instance, one remote can be set to transmit on

channel #1 and the corresponding PC can be set to receive only channel #1. And the other

remote can be set to transmit on channel #2 and the corresponding PC can be set to receive only

channel #2. This was, the #2 remote will never control the #1 PC.

If you use Microsoft-provided IR drivers and the RC-6 protocol, this should not be of concern. If

you are building a HID device or a RF remote, you will need to implement this functionality.

Receive-Only Doesn’t Support Many Scenarios

Because of the proliferation of cable and satellite set-top boxes, the need to IR blasting is

significant. The number of scenarios where a receive-only device is useful is fairly limited. The

additional cost of producing a transmit/receive device may well be worth it considering the

additional scenarios that this feature enabled.

Multiple Receivers on a Single Computer

You should take into account that there may be multiple IR receivers on a single computer. With

IR receivers going into Super IO Chips, becoming integrated in TV tuners, being included inside

PC cases, and with external USB receivers, it is very likely that a given user will have more than

one IR receiver on their computer.

A receiver, such as a HID receiver, which blindly passes HID events to the operating system is

likely to have problems in this area. If you use a legacy device, a port-driver device, or an

emulation device, this is accounted for in the software and will not be a problem.

HID Device Limitations

If you are building a device that is not a legacy device, an emulator device, or a port driver

device, you will face several limitations in the construction of your device. This is because your

device produces HID codes directly without being filtered through our class drivers.

Device Incompatibility

If your HID device is IR, it is probably tied to a single protocol. Because Windows Media Center

uses multiple IR protocols, there are going to be ―Media Center Compatible‖ IR remotes that are

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 72

not compatible with your IR receiver. Even if you program your hardware to respond to all

protocols that Windows Media Center uses today, you will not be able to program it for all

protocols that Windows Media Center might support in the future. This will lead to support calls

when users expect their ―Media Center Compatible‖ remote to work with your ―Media Center

Compatible‖ receiver.

If your device uses a non-IR transport, then it will not work with any Windows Media Center IR

remotes.

Multiple Keypress Bugs

With the increased number of options for building IR receivers, PCs that have multiple IR

receivers are becoming more and more common. Without software to filter multiple keypresses, a

single remote control press might be received by multiple receivers and passed up to the user

interface multiple times.

Legacy devices, emulator devices, and port driver devices all go through a layer of software that

prevents a single remote control key press from going to the user interface more than once.

HID devices don‘t go through this layer. As a result, two HID receivers may receive the same

keypress and send it up to the user interface, resulting in one keypress per receiver.

Localization Problems

HID Usage Tables, which are defined by the USB Consortium, define number presses based on

the layout of the keyboard. For example, if you press the ―1‖ key on your remote control, the HID

usage sent is tied to the key that is one row down and one key in on a typical American 101-key

keyboard. Certain keyboard layouts, such as Hungarian and French, define this key differently.

As such, if you press the ―1‖ key on a remote control connected to a PC on a French or

Hungarian PC, you may not actually get a ―1‖ key press.

If you implement a device that sends HID codes directly, testing on all locales and with all

keyboard layouts is necessary. You may need to limit the locales where you can distribute your

remote control and you may need to produce localized remote controls for locales that have

different keyboard layouts.

Registry Changes Necessary for Triple-Tap Operation (Windows Vista Only),
IME, and Numeric Input for Windows 7 and Later

Most of the time, the Windows Media Center UI treats remote control button presses exactly the

same as keyboard presses. One time when this is not the case is when the user is entering text

into a search box using what Microsoft calls ―Triple Tap‖ functionality. More generically, this can

be thought of as a ―remote control specific IME‖ (Input Method Editor). In this case, the Windows

Media Center UI treats the remote control buttons differently. For instance, if you enter ―2‖ on the

remote, it will produce the number ―2‖. If you enter ―2,2‖, it will produce the letter ―A‖. If you enter

―2,2,2‖, it will produce the letter ―B‖, etc.

In order to support this, Windows Media Center determines when a specific keypress comes from

a remote control by looking up the name of the receiver device in a registry table to see if it

matches the list of names of all remote control devices.

To support this scenario with a HID device, you must provide a setup executable that sets this

registry key. You will need to test input scenarios in the Windows Media Center UI and make

sure they work correctly.

Further details on this feature are available from Microsoft.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

73

IR Receiver/Transceiver Hardware Requirements

This section provides information about IR transceiver and receiver hardware for use with

Windows Media Center. It provides requirements for hardware manufacturers and specifies the

hardware parameters that IR receivers must support.

The following abbreviations are used in this section:

 BPF: Band Pass Filter

 AGC: Automatic Gain Control

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 74

Components of an IR Transceiver

The following sections provide information about the components of an IR transceiver.

Remote Control Input and a Long-Range IR Receiver (Up to Five
Meters)

The Windows Media Center user interface is designed to be used with a remote control by an

end user who is sitting up to 5 meters away from their Windows Media Center PC. The long-

range IR receiver is used to process commands that are sent from the remote control and used

to control and navigate through the Windows Media Center user interface. The typical distance

between the remote control and IR receiver is typically 2 to 3 meters. However, the remote

control and receiver must work properly at up to a minimum of 5 meters apart.

The long-range receiver is also used during the initial setup when the end user first starts

Windows Media Center. The long-range receiver parses the remote control IR signal based on an

IR data sample to identify the remote control. If Windows Media Center cannot identify a set-top

box remote control based on the IR data sample, the user can then perform IR learning. Input

functions are required for IR receivers or IR transceivers.

IR Learning (from Five Centimeters or Less)

IR learning is used to capture IR data from a set-top box remote control that is not listed in the

Windows Media Center Licensed IR database. After the data is captured in the IR learning

process, the data is transmitted using IR emitting to control the set-top box.

IR Emitting

IR emitting is used to send IR commands from the Windows Media Center PC to the set- top box

to change channels. This means that the user needs only one remote control to control the

Windows Media Center PC. IR emitting also enables Windows Media Center to change channels

automatically so that TV shows are recorded as scheduled even when the end user is not

present and using the Windows Media Center PC.

Additionally, IR emitting is used when an end user is using a Media Center Extender device to

control and play content that is on the Windows Media Center PC. The TV signal and

programming that are sent to the Extender device come from the Windows Media Center PC.

When a set-top box is present, the Windows Media Center PC must be able to emit an IR signal

to the set-top box to change channels when watching TV and using an Extender device.

IR learning is required if a manufacturer is building an IR transceiver.

System-Level Interaction

End users expect a Windows Media Center PC to perform in a way that is similar to other

consumer electronics devices that you can control with a remote control. This includes the ability

to use the remote control to wake the Windows Media Center PC after it goes into a standby

mode. A system function enables the remote control to wake the Windows Media Center PC from

a standby state. System functions are required for IR receivers or IR transceivers.

IR Transceiver Requirements

The following sections provide requirements for the components of an IR transceiver.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

75

Remote Control Input and Long-Range Receiver Requirements
(Up to Five Meters)

The following list provides remote control and long-range receiver requirements.

 Support carrier frequencies ranging from 30-60 kilohertz (kHz).

 Return IR waveform envelopes to software for decoding an IR signal by using software. The IR

signal must not be decoded by using hardware except for using the remote control Sleep button

to wake a Windows Media Center PC from a standby state.

 Receive IR data from up to 5 meters at both the center of the receiver and up to 2 meters off

center.

 Have Band Pass Filter (BPF), Automatic Gain Control (AGC), and demodulator inside the IR

receiver.

 Use BPF centered at 36-38 kHz.

 BPF passes optimized for a signal ranging from 30-60 kHz.

 Recommended to be optimized for 950 nanometers (nm) of light.

 Hardware must sample at 50 μsec.

 No noticeable degradation in signal quality from a distance up to 5 meters from the center and

from a distance and that is up to 2 meters off center (in an indoor room with fluorescent lights

without excessive reflection in the room).

 Must be able to sample pulses as short as 216 μsec with 378 μsec space to recover between

pulses at 36 kHz.

 Must be able to accurately receive Windows Media Center RC-6 protocol.

 Must be able to accurately receive Windows Media Center SMK QP protocol

 Must be able to accurately receive Microsoft Media Center IR Keyboard input.

 The receiver must operate in the 33-50% duty range because most IR signals operate in this

range.

 The receiver may introduce up to a roughly 200-250 μsec error when measuring a 600 μsec

pulse or space.

IR Learning Requirements (from Five Centimeters or Less)

The following list provides IR learning requirements.

 Support carrier frequencies ranging from 30-60 kHz.

 Be able to capture a raw IR data stream.

 Be able to capture an IR carrier frequency.

 Be able to respond to the IOCTL to flash the receiver‘s LED.

Transmitting IR Data (Emitting) Requirements

The following list provides IR data (emitting) requirements.

 Support carrier frequencies ranging from 30-60 kHz.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 76

 Support independent IR transmitter jacks (2 minimum).

 IR emitter cable should be a minimum of 2 meters in length.

 IR emitters are adhesive.

 IR emitters will provide the consumer with a visible LED.

 Support the Modulated IR mode. Modulated mode transmits a signal modulated with a 30-60 kHz

carrier with a sampling resolution of 50 μsec.

Pulse Mode Remotes

Pulse mode is no longer required.

System-Level Interaction Requirements

The following list provides system-level interaction requirements.

 Must resume from standby mode using the Sleep button for the particular IR protocol for which

the hardware is optimized. Resume-from-standby must do hardware decoding of the protocol and

operate when the Windows Media Center computer is in a state of lower power consumption.

 Able to wake from S1 or S3. Resuming or waking from S4 or S5 is optional.

 Receiver module should flash the LED when receiving IR.

Important This is highly recommended as a key user scenario.

 Must properly indicate a user presence to the operating system when waking the system. This

can be tested by first waking the system with the remote control, and then by running a

scheduled task. The monitor should turn on when waking with the remote control, but not when

waking from running a scheduled task.

 Power consumption requirements are defined by the bus and architecture used by the IR

receiver. For example, USB allows 2.5 mA during suspend and a variable amount of current

depending on whether it is a high-power or lower-power device.

 If using a USB device, it is recommended that the device be able to operate correctly when it is

plugged into a passive hub.

Emulation Requirements

This section describes how to build a USB consumer infrared receiver (CIR) for Windows Media

Center in the next version of Windows. These devices use the IR Transceiver Version 2 or IR

Receiver Version 3 wire (USB) protocol, but not the IR Transceiver Version 2 or IR Receiver

Version 3 bill of materials. They are referred to as IR emulation devices.

Host System Requirements

Emulation devices are only supported by Windows Vista and future operating systems. Devices

built according to this information are not supported for and will not work on Windows XP Media

Center Edition.

To develop and test this functionality, you will need a Windows Vista or later operating system.

Device Driver Usage

IR emulation devices use the in-box Windows CIR device drivers, including usbcir.sys,

circlass.sys, and hidir.sys. No device driver development is necessary to create an IR emulation

device.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

77

Device Design Considerations

Considerations for building an emulation device are very similar to considerations when building

an IR receiver device using the port driver model.

Unique Serial Numbers

The software requires each device to have its own serial number. This is implemented using the

USB iSerialNumber string descriptor. The format of this string is not mandated as long as it is

unique to the individual device.

The serial number is necessary for the software to discriminate between multiple identical

devices that are plugged into the same computer.

This serial number does not need to be truly unique as long as it is consistent. This means that

the device could assign a semi-random number to itself the first time it is plugged in as long as it

uses the same number on each subsequent use of the device. This allows the manufacturer to

avoid serialization of serial numbers at device manufacture time.

Emulator Versioning

There are two versions of the emulator protocol. The first version (called

EMVER_EMULATOR_V1 in the code) was added for the Windows Media Center in the release

of Windows Vista. The new version (called EMVER_EMULATOR_V2 in the code) is added for

Windows 7 to correspond with the Consumer IR Version 2 DDI changes to the IR class

driver/port driver model.

An EMVER_EMULATOR_V1 emulator should work correctly with the version 1 DDI and the

version 2 DDI. An EMVER_EMULATOR_V2 should work with the version 2 DDI and should

mostly work with the version 1 DDI. It may expose device capabilities that the version 1 DDI is

unprepared to take advantage of.

It should be assumed that all topics in this section refer to both the EMVER_EMULATOR_V1

interface and the EMVER_EMULATOR_V2 interface unless otherwise specified. If a section only

refers to the EMVER_EMULATOR_V2 interface, it will be labeled ―EMVER_EMULATOR_V2

only‖.

For more information about how the host learns whether the device is EMVER_EMULATOR_V1

or EMVER_EMULATOR_V2, see CMD_GETEMVER and RSP_EQEMVER.

Types of Emulation Devices

For version 1 emulation devices, there are two types of devices that you can build as emulation

devices:

 IR transceiver emulator: a device that can receive IR input from a remote and can transmit IR to

control a set-top box, such as a TV signal cable box or a satellite box.

 IR receiver emulator: a device that can only receive IR input from a remote; it cannot transmit IR

to control a set-top box.

For information about the requirements for providing either transmitter or receive-only

functionality, see sections Input-0007 and Input-0045 of the Windows Logo Program Hardware

Requirements.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 78

The version 2 emulation interface adds additional capabilities bits, which allow a wider range of

devices, such as ―blast only‖, ―learn only‖, and so on. See CMD_GET_DEVDETAILS and

RSP_EQ_DEVDETAILS for more information.

Carrier Capture

When using the wide-band receiver, the device firmware must return the carrier count for any

particular sample. This carrier is an approximate value and applies to an entire sample. It is not

necessary to return an instantaneous carrier value. So, for instance, if the software is using the

wide-band receiver and asks the user to press the zero key, the firmware would send the RLC for

the envelope up to the software, and then send the value of the carrier frequency for the entire

key-press to the software.

The carrier information is sent from the firmware to the software as the ―duration that the signal

was high.‖ Details are in the response topic RSP_EQIRRXCFCNT, later in this document.

USB 1.1 Devices

You can build an emulator device that is a Full Speed USB 1.1 device. For Full Speed devices,

there is very little difference between USB 1.1 and USB 2.0. To make this work, you can have a

Full Speed USB 1.1 chip, but the firmware must follow two rules that are newer for USB 2.0:

 You must set bcdUSB to 0x0200 in the Device Descriptor. If the value of bcdUSB is hard-coded

to a different value in your USB chip, you cannot use that chip.

 You must respond correctly to the device_qualifier request. (For more information, see the

comment that follows regarding Section 9.6.1 of the USB 2.0 specification.)

The 2.0 specification adds a third device-implementation choice, High-Speed, to the Full-Speed

and Low-Speed device implementation choices. It does not eliminate the Full-Speed and Low-

Speed device choices. A device can claim it is compliant with the 2.0 specification even if it is a

Full-Speed or Low-Speed only device.

A USB 2.0 compliant device that is Full-Speed only is essentially the same as a USB 1.1

compliant device.

Section 9.6.1 of the USB 2.0 specification says this:

The DEVICE descriptor of a high-speed capable device has a version number of 2.0 (0200H). If

the device is full-speed only or low-speed only, this version number indicates that it will respond

correctly to a request for the device_qualifier descriptor (that is, it will respond with a request

error).

This means that if a Full-Speed only or Low-Speed only device returns a Device Descriptor with

bcdUSB set to 0x0200, it should be prepared to receive a Get Descriptor request for a Device

Qualifier Descriptor (see section 9.6.2 in the USB 2.0 specification) and if it receives this request,

it should respond to this request with a Request Error, that is, a STALL. (See section 9.2.7 in the

USB 2.0 specification.)

Modulated IR Protocol

 In modulated protocols, the IR signal is modulated with a carrier, typically around 30-60 KHz. The

information in a given data packet is determined by the width of the pulses in the envelope (pulse

width encoding), the width of the space between pulses in the envelope (space encoding), or the

timing of edges in the envelope (bi-phase or Manchester encoding). Pulse and space widths in

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

79

the envelope are typically in the 200-900 μsec range. About 95% of remote controls use some

sort of modulated protocol. Emulator devices must support this protocol.

Flow Control

When transmitting IR, it is possible that the host will push IR data faster than the device can emit

it. Instead of buffering this data, the device should return a negative acknowledge (NAK)

handshake to indicate that it is not ready for the additional data yet. For more information, see

section 8.5.1 of the USB 2.0 specification.

Bootloaders

Version 2 emulator devices must have a bootloader mode to support wake programming, which

is a requirement of the Windows Logo Program. The bootloader is a second mode of the

emulator device that the host can use to program the wake pattern. This mode is independent of

the main operating mode and is discussed in the Bootloader Implementation section.

Two Methods for Wake Programming

The V2 emulator interface supports two different methods for wake programming. These

methods are not necessarily mutually exclusive, but most hardware manufacturers will choose

one or the other.

Payload-Based Programming

The first option is to program the wake pattern in your device based on payload. If you choose

this method, you would program your device in response to a CMD_BOOT_SETWAKEPATTERN

request. The CMD_BOOT_SETWAKEPATTERN gives your device the Protocol, Payload, and

Address for the Wake key and it expects your firmware to watch for this key based on these

numbers. This requires your firmware to be able to decode both the RC6 and Quatro Pulse

protocols, and it expects this firmware to be parameterized in such a way that it can change its

behavior based on these numbers.

This option allows a simple communication between the host and device, but requires a more

complicated firmware.

Block-Based Programming

The second option is to program the wake pattern in your device based on a block of firmware. If

you choose this method, you would program your device in response to a

CMD_BOOT_WRITEBLOCK request. The CMD_BOOT_WRITEBLOCK request allows the host

to send an arbitrarily-sized block of firmware to your device for each <protocol,payload,address>

combination. This option is less demanding on the firmware that is in your device, but it requires

you to install multiple firmware blocks into the user‘s registry (one block of firmware for each

possible wake pattern).

This option allows for a simpler firmware implementation, but it requires the hardware

manufacturer to install firmware blocks into the user‘s registry.

USB Device Descriptors

USB device descriptors are defined by the USB consortium. For information about definitions and

usages of these descriptors, see the developer section of the USB 2.0 specification at

http://www.usb.org.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 80

Descriptors are defined using a pseudo-C syntax. Any specific values defined in this section are

required by this specification. You may choose values that are not defined in the specification.

The type word is two bytes long and is little-endian, according to USB rules.

The host requests these descriptors through the EP0 OUT (control OUT) endpoint. The device

returns these descriptors to the host over the EP0 IN (control IN) endpoint.

Device Descriptor

The device must have a device descriptor and must have at least one configuration. For more

information, see section 9.6.1 in the USB 2.0 specification.

The following code shows a device descriptor structure:

typedef struct deviceDescriptor {

 byte bLength = sizeof(struct deviceDescriptor);

 byte bDescriptorType = TYPE_DEVICE_DESCRIPTOR;

 word bcdUSB = 0x0200; // USB 2.0 is required for Microsoft Compatible

 // Device Descriptors to function properly.

 byte bDeviceClass = 0; // Not used.

 byte bDeviceSubclass = 0; // Not used.

 byte bDeviceProtocol = 0; // Not used.

 byte bMaxPacketSize; // This is hardware dependent. Choose a value

 // that is appropriate for your USB chip.

 word idVendor; // Vendor ID - assigned by USBIF.

 word idProduct; // Product ID - assigned by your company.

 word bcdDevice; // Device release number.

 byte iManufacturer; // String index for manufacturer.

 byte iProduct; // String index for product name.

 byte iSerialNumber; // String index for serial number.

 byte bNumConfigurations; // Count of configurations.

 // Must be at least 1.

}

Note bcdUSB must be set to 0x0200, even if the device is a full-speed USB 1.1 device. For

more information, see the topic "USB 1.1 Devices" earlier in this document.

Configuration Descriptor

The device must have at least one configuration that has at least one interface. For more

information, see section 9.6.3 of the USB 2.0 specification.

The following code shows a configuration structure:

typedef struct configurationDescriptor {

 byte bLength = sizeof(struct configurationDescriptor);

 byte bDescriptorType = TYPE_CONFIGURATION_DESCRIPTOR;

 word wTotalLength; // Total size of configuration data.

 // See section 9.6.3 in USB 2.0 spec.

 byte bNumInterfaces; // Must be at least 1.

 byte bConfigurationValue;

 byte iConfiguration; // String index for configuration name.

 byte bmAttributes = 0xA0; // Remote wakeup required. May also be 0xE0.

 byte bMaxPower;

}

The device can support additional interfaces as necessary. These extra interfaces could be used,

for example, to support a proprietary firmware download mechanism.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

81

Interface Descriptor

The device must have at least one interface, which must have at least two endpoints: one control

endpoint and one communication endpoint. For more information, see section 9.6.5 of the USB

2.0 specification.

For communication, the device can use a single bidirectional endpoint, as the examples in this

document illustrate, or it can use two unidirectional endpoints.

The following code shows an interface descriptor structure:

typedef struct _interfaceDescriptor {

 byte bLen = sizeof(struct _interfaceDescriptor);

 byte bDescriptorType = TYPE_INTERFACE_DESCRIPTOR;

 byte bInterfaceNumber = 0;

 byte bAlternateSetting = 0;

 byte bNumEndpoints = 2;

 byte bInterfaceClass = 0xFF;

 byte bInterfaceSubclass = 0xFF;

 byte bInterfaceProtocol = 0xFF;

 byte iInterface;

}

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 82

Endpoint Descriptor – OUT Endpoint

The device must have an endpoint descriptor that describes how the host communicates infrared

data and other information to the device. (Endpoint #0 is the control endpoint and does not

require an endpoint descriptor.) For more information, see section 9.6.6 of the USB 2.0

specification.

The following code shows an OUT endpoint descriptor structure:

typedef struct _endpointDescriptorEp1Out {

 byte bLength = sizeof(struct _endpointDescriptorEp1Out);

 byte bDescriptorType = TYPE_ENDPOINT_DESCRIPTOR;

 byte bEndpointAddress = 0x01; // EP1 OUT.

 byte bmAttributes = 0x03; // Interrupt endpoint.

 word wMaxPacketSize; // Hardware dependent.

 byte bInterval; // Suggested value = 1ms.

}

Endpoint Descriptor – IN Endpoint

The device must have second endpoint descriptor that describes how the device communicates

infrared data and other information to the host. For more information, see section 9.6.6 of the

USB 2.0 specification.

The following code shows an IN endpoint descriptor structure:

typedef struct _endpointDescriptorEp1In {

 byte bLength = sizeof(struct _endpointDescriptorEp1In);

 byte bDescriptorType = TYPE_ENDPOINT_DESCRIPTOR;

 byte bEndpointAddress = 0x81; // EP1 IN.

 byte bmAttributes = 0x03; // Interrupt endpoint.

 word wMaxPacketSize; // Hardware dependent.

 byte bInterval; // Suggested value = 1 ms.

}

Required String Descriptors

The device must return strings for byte iManufacturer, iProduct, and iSerialNumber. Strings

are not required for iConfiguration or iInterface.

The serial-number string must be unique to the device. This means that two identical devices

created by the same manufacturer will each have their own serial numbers. This is necessary

because there may be two IR transceivers on a single host and the host uses the serial number

to discriminate between the two devices.

Additionally, the Microsoft OS String Descriptor must be returned to the host when the host

requests string ID = 0xEE. This is necessary to support the Microsoft Compatible Device

Descriptor.

Microsoft Compatible Device Descriptor

The Microsoft® Compatible Device Descriptor is used by firmware to tell the host that the device

is an IR emulator device. The host then loads the appropriate drivers. For more information about

the Microsoft OS Descriptor and the Extended Compat ID Descriptor, see the Windows Hardware

Developer Central page on the Microsoft Web site

(http://go.microsoft.com/fwlink/?LinkId=144040).

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

83

To implement the descriptor, two firmware changes are necessary:

 The firmware must return the Microsoft OS String Descriptor when the host requests it. This is

how the firmware identifies itself as supporting the Extended Compat ID Descriptor.

 The firmware must return the appropriate Extended Compat ID Descriptor when the host asks for

it. This is how the firmware notifies the host that it is an IR Transceiver Version 2 or IR Receiver

Version 3 emulation device.

Note The same Extended Compat ID Descriptor is returned for both IR Transceiver and IR

Receiver devices. The difference between a transmitter/receiver device (transceiver) and a

receive-only device (receiver) is defined by the device when it responds to the

CMD_GETIRNUMPORTS request.

Both of these queries happen at device enumeration time.

Microsoft OS String Descriptor

When the host sends a request for string 0xEE to the firmware, the firmware must respond with a

string containing the fields described in the following table.

Field Length

(bytes)

Value Description

bLength 1 0x12 Length of the descriptor

bDescriptorType 1 0x03 String descriptor

qwSignature 14 'MSFT100' Signature

bMS_VendorCo

de

1 Vendor

Code

Vendor code to fetch other OS

Feature Descriptors; equal to

GET_CONFIG_DESCRIPTOR

bPad 1 0x00 Pad field

The bLength, bDescriptorType, qwSignature, and bPad values must be exactly as described

here.

The bMS_VendorCode value is defined by the firmware writer and is used by the host to request

the Extended Compat ID descriptor. This appears as bRequest in the example code in the

Extended Compat ID Descriptor topic below.

Note To debug this, you may need to delete the osvc registry key on your computer. For more

information, see http://go.microsoft.com/fwlink/?LinkId=144042.

If you are using a bMS_VendorCode of 1, your string will be the following exact value (in hex):

0x12 0x03 0x4D 0x00 0x53 0x00 0x46 0x00 0x54 0x00 0x31 0x00 0x30 0x00 0x30 0x00 0x01 0x00

Extended Compat ID Descriptor

The operating system will first issue a vendor specific request to the device with a wLength value

set to 16. The purpose of this setting is to get the header section of the Extended Compat ID

Descriptor. The following is an example trace to retrieve the header section:

bmRequestType = 1100000

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 84

bRequest = 0x01 – bMS_VendorCode

wValue = 0x0000 -

wIndex = 0x0004 – INDEX_CONFIG_DESCRIPTOR

wLength = 16 – Length of the request

After the header is retrieved (and if it matches the format of the header section), the operating

system will issue a second request to read the entire Extended Compat ID Descriptor.

The Extended Compat ID Descriptor is an array of bytes containing the fields shown in the

following table.

Field Length

(bytes)

Value Description

dwLength 4 0x28 0x00 0x00

0x00

Length of the descriptor

bcdVersion 2 0x00 0x01 Version of the

descriptor

wIndex 2 0x04 0x00 Fixed:

INDEX_CONFIG_

DESCRIPTOR

bCount 1 0x01 Count of device

functions—must be 1

Reserved 7 0x00 0x00 0x00

0x00 0x00 0x00

0x00

Reserved

bFirstInterfaceNu

mber

1 0x00 First interface for this

function

Reserved 1 0x01 Reserved

compatibleID 8 "USBCIR\0\0"

-or-

0x55 0x53 0x42

0x43 0x49 0x52

0x00 0x00

Compatible ID, padded

with zeros

subcompatibleID 8 "IR2CMPT\0"

-or-

0x49 0x52 0x32

0x43 0x4D 0x50

0x54 0x00

Sub-compatible ID,

padded with zeros

Reserved 6 0x00 0x00 0x00

0x00 0x00 0x00

Reserved

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

85

IAD/Extended Compat ID Descriptor Interaction

If you build an emulation device that is part of a composite USB device, you will need to modify

your Extended Compat ID Descriptor to match the interfaces as defined in your IAD descriptor.

Below is an example of an Extended Compat ID descriptor for a composite device with three

functions and three interfaces. The first function is CIR and uses interface 0. The second function

is something else and uses interface 1. The third function is something else and uses interface 2.

For more information, see the Extended Compat ID Descriptor documentation.

 BYTE extendedCompatIDDesc[] = {

 0x58, 0x00, 0x00, 0x00, // dwLength

 0x00, 0x01, // bcdVersion

 0x04, 0x00, // INDEX_CONFIG_DESCRIPOTR

 0x03, // bCount - 3 interfaces.

 // First interface:

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Reserved

 0x00, // Interface index

 0x01, // Reserved

 0x55, 0x53, 0x42, 0x43, 0x49, 0x52, 0x00, 0x00, // CompatibleID

 0x49, 0x52, 0x32, 0x43, 0x4D, 0x50, 0x54, 0x00, // SubcompatibleID

 // Second interface:

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Reserved

 0x01, // Interface Index

 0x01, // Reserved

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // CompatibleID

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // SubcompatibleID

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Reserved

 // Third interface:

 0x02, // interface interface index

 0x01, // Reserved

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // CompatibleID Null filled

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // SubcompatibleID Null filled

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Reserved

 };

Commands and Responses

The interface between the host computer and the IR emulation device is a command-response

interface. The host sends a series of command bytes, with the first byte determining the type of

command and the length. The IR emulator device responds with a response specific to the

command received. Not all commands elicit a response.

Commands and responses have a consistent format. All communication packets begin with a

lead byte. This byte is divided into a 3-bit port value and a 5-bit length value.

There are three valid port values, as shown in the following table.

Number Name Description

100 PORT_IR Used for IR commands and responses.

111 PORT_SYS Used for "system" commands and responses

(non-IR device commands).

110 PORT_SER A legacy port which used to be for a serial port but

is now used only for loopback (flush) messages.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 86

The 5-bit length field is overloaded as follows:

 If the length value is 11111, the following byte is a command (or response byte). The value of the

command byte determines the length of the message. So, if the first byte of the packet is 0x9F

(10011111), then this is a command byte (CMD_PORT_IR). The device then looks at the second

byte. If it is 0x06 (CMD_SETIRCFS), then the device knows this packet is 4 bytes long because

all CMD_SETIRCFS packets are 4 bytes long.

 If the length value is not 11111, then it specifies the number of bytes of port data that follow. So,

if the first byte of the packet is 0x90 (10010000), the following 16 bytes of data are for the IR port.

In that case, the total length of the packet, including the lead byte, is 17 bytes.

This same format is used in both directions—from host to device and from device to host. So IR

commands and responses always begin with 0x9F.

If either the lead byte sent by the host or the command byte that follows the lead byte is incorrect,

then the device sends a RSP_CMD_ILLEGAL response to the host. The device then waits for a

CMD_RESUME command before resuming typical operation.

If the host receives an illegal lead byte or an illegal response byte, it can assume the device is in

an error state and send a CMD_RESUME command to the device.

Multiple commands may come from the host in a single packet. The commands will always be

sequential and never interleaved.

Commands That Set Device State

All commands that set device state are sent to the device over the EP1 OUT endpoint.

Responses to these commands are returned to the host over the EP1 IN endpoint.

The following commands set device state:

 CMD_RESET – Reset the device.

 CMD_RESUME – Resume the device after error.

 CMD_SETIRCFS – Set IR carrier.

 CMD_SETIRTIMEOUT – Set IR time-out.

 CMD_SETIRTXPORTS – Set IR transmit ports.

 CMD_SETIRRXPORTEN - Set IR receive ports.

 CMD_FLASHLED – Flash the LED

CMD_RESET – Reset the Device

Message ID: CMD_RESET

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_SYS 0xFF System command

1 CMD_RESET 0xFE Command ID - reset the device

Description

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

87

Resets the device. This command should restart the firmware in a default state.

There is no response to this command.

If the device has a bootloader, the device should enter the bootloader when the CMD_RESET

command is received from the host.

CMD_RESUME – Resume the Device After Error

Message ID: CMD_RESUME

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_SYS 0xFF System command

1 CMD_RESUME 0xAA Command ID - resume the device

after error

Description

This command clears any existing error state. This allows the host to resume sending data in a

typical fashion. This is sent by the host after specific errors are returned by the device.

CMD_RESUME is sent by the host when one of the following occurs:

 An RSP_TX_TIMEOUT response is received from the device.

 An RSP_CMD_ILLEGAL response is received from the device.

 The device times out. This can happen, for instance, if the host is expecting a 6-byte response

and it receives only 4 bytes from the device.

There is no response to this command.

CMD_SETIRCFS – Set IR Carrier

Message ID: CMD_SETIRCFS

Message length: 4 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_IR 0x9F IR command

1 CMD_SETIRCFS 0x06 Command ID - set IR carrier

frequency

2 CP Number Carrier prescalar

3 CC Number Carrier period

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 88

Description

This command sets the IR carrier frequency to use for transmitting IR. The frequency is sent as a

carrier period and a carrier prescalar. The need to use a period value and a prescalar value is

based on the PIC18F4320 timer architecture and maps directly to timer registers in this chip.

CP contains a prescalar value, and CC contains the carrier period in 1/10 μsec steps. The actual

carrier period will be:

Period = (2 ^ (CP*2)) * (CC+1) * 0.1us

where

frequency = 1 / period

Setting CP and CC to 0 will cause the device to use no carrier at all (that is, no light modulation,

just constant on and off periods). The period count value CC can be any number from 0 to 255.

The following table describes CP and CC values for periods from 16 μsec to 34 μsec. This covers

the required range of 30 to 60 KHz. Initial values of CP and CC should be 1 and 66 (37037 Hz),

respectively.

Note This table calculates CP and CC based on periods in whole μsec increments. Because the

table starts with carrier period, which is an integer, and produces CP and CC, which are also

integers, values must be rounded. However, the rounding errors introduced into this table are not

significant enough to affect the accuracy of IR blasting.

Period (μsec) Carrier (Hz) CP (μsec) CC (μsec)

2 500000 0 19

3 333333 0 29

4 250000 0 39

5 200000 0 49

6 166666 0 59

7 142857 0 69

8 125000 0 79

9 111111 0 89

10 100000 0 99

11 90909 0 109

12 83333 0 119

13 76923 0 129

14 71428 0 139

15 66666 0 149

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

89

Period (μsec) Carrier (Hz) CP (μsec) CC (μsec)

16 62500 0 159

17 58823 0 169

18 55555 0 179

19 52631 0 189

20 50000 0 199

21 47619 0 209

22 45454 0 219

23 43478 0 229

24 41666 0 239

25 40000 0 249

26 38461 1 64

27 37037 1 66

28 35714 1 69

29 34482 1 71

30 33333 1 74

31 32258 1 76

32 31250 1 79

33 30303 1 81

34 29411 1 84

DC Mode

If CP and CC are both zero, the transmitter operates in DC mode, and there is no carrier. This

means that any RLC transmitted represents an unmodulated signal. There are no DC code sets

in the current database.

CMD_SETIRTIMEOUT – Set IR Time-Out

Message ID: CMD_SETIRTIMEOUT

Message length: 4 bytes

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 90

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_IR 0x9F IR command

1 CMD_SETIRTIMEO

UT

0x0C Command ID - set IR time-out

2 TOH Number High byte of time-out value

3 TOL Number Low byte of time-out value

Description

This command sets the IR time-out. This is the period of silence necessary before the firmware

will determine that a signal has ended and will stop sending silence to the host.

TOH and TOL are the high and low bytes of the time-out period as a count of IR sample periods.

Response Description

RSP_EQIRTIMEOUT Successfully changed the IR time-out period.

No errors are returned to the host for this command.

CMD_SETIRTXPORTS – Set IR Transmit Ports

Message ID: CMD_SETIRTXPORTS

Message length: 3 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_IR 0x9F IR command

1 CMD_SETIRTXPOR

TS

0x08 Command ID - set IR transmit

ports

2 P Number Bitmask of ports to set

Description

This command sets the ports that will be used for IR transmissions. The bits of P represent the 8

IR ports, IR0 being the LSB, IR7 the MSB. A "1" bit indicates that the port will be used. This

command is generally used before each IR transmission to specify which ports it will go to. The

IR emulator device will not send a response to verify this command.

No response is returned to the host for this command.

No errors are returned to the host for this command.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

91

CMD_SETIRRXPORTEN - Set IR Receive Ports

Message ID: CMD_SETIRRXPORTEN

Message length: 3 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_IR 0x9F IR command

1 CMD_SETIRRXPOR

TEN

0x14 Command ID - set IR receive

ports

2 P Number Port number to receive on

Description

This command sets the IR ports that are enabled for reception. If P == 1, then the long-range

receiver is used. If P == 2, then the wide-band receiver is used.

Response Description

RSP_EQIRRXPORTEN Returns the receiver number used for IR

reception.

No errors are returned to the host for this command.

CMD_FLASHLED – Flash the LED

EMVER_EMULATOR_V2 only

Message ID: CMD_FLASHLED

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_SYS 0xFF System command

1 CMD_FLASHLED 0x23 Command ID – flash the LED

Description

When the device receives this command, it should flash its LED for two seconds.

Response Description

RSP_FLASHLED Successfully flashed the LED

No errors are returned to the host for this command.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 92

Commands That Query Device State

All commands that query device state are sent to the device over the EP1 OUT endpoint.

Responses to these commands are returned to the host over the EP1 IN endpoint.

The following commands query device state:

 CMD_GETIRCFS - Get IR carrier.

 CMD_GETIRTIMEOUT – Get IR time-out.

 CMD_GETIRTXPORTS – Get IR transmit ports.

 CMD_GETIRRXPORTEN – Get IR receive ports.

 CMD_GETPORTSTATUS – Get transmit port status.

 CMD_GETIRNUMPORTS – Get number of ports.

 CMD_GETWAKESOURCE – Get wake source.

 CMD_GETEMVER – Get interface version used by emulator.

 CMD_GETDEVDETAILS – Get details about device capabilities.

 CMD_GETWAKESUPPORT – Get details about device wake support.

 CMD_GETWAKEVERSION – Get information about current wake pattern.

CMD_GETIRCFS – Get IR Carrier

Message ID: CMD_GETIRCFS

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_IR 0x9F IR command

1 CMD_GETIRCFS 0x07 Command IR - get IR carrier

frequency

Description

This command queries the Snowball for its current IR carrier setting.

Response Description

RSP_EQIRCFS Returns the carrier frequency.

CMD_GETIRTIMEOUT – Get IR Time-Out

Message ID: CMD_GETIRTIMEOUT

Message length: 2 bytes

Message direction: Host to device

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

93

Offset Name Value Description

0 CMD_PORT_IR 0x9F IR command

1 CMD_GETIRTIMEO

UT

0x0d Command IR - get IR time-out

Description

This command queries the device for its current IR time-out setting.

Response Description

RSP_EQIRTIMEOUT Returns the IR time-out period.

CMD_GETIRTXPORTS – Get IR Transmit Ports

Message ID: CMD_GETIRTXPORTS

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_IR 0x9F IR command

1 CMD_GETIRTXPO

RTS

0x13 Command ID - get IR transmit

ports

Description

This command queries the device to get the bitmask of currently selected IR transmit ports.

Response Description

RSP_EQIRTXPORTS Returns the bitmask of selected transmit ports.

CMD_GETIRRXPORTEN – Get IR Receive Ports

Message ID: CMD_GETIRRXPORTEN

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_IR 0x9F IR command

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 94

Offset Name Value Description

1 CMD_GETIRRXPOR

TEN

0x15 Command ID - get IR receive

ports

Description

This command returns which IR ports are being used for reception.

Response Description

RSP_EQIRRXPORTEN Returns the receiver number used for IR

reception.

CMD_GETPORTSTATUS – Get Transmit Port Status

Message ID: CMD_GETPORTSTATUS

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_SYS 0xFF System command

1 CMD_GETPORTSTATU

S

0x11 Command ID - get transmit port

status

2 P Number Port number to get status for

Description

Sends a command to have the device identify what is connected to the transmit port (for

example, nothing or an emitter).

Response Description

RSP_GETPORTSTATUS Respond with transmit port status.

No errors are returned to the host for this command.

CMD_GETIRNUMPORTS – Get Number of Ports

Message ID: CMD_GETIRNUMPORTS

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_IR 0x9F IR command

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

95

Offset Name Value Description

1 CMD_GETIRNUMPORT

S

0x16 Command ID - get the number of

ports

Description

This command queries the device for the number transmit and receive ports that it has.

Response Description

RSP_EQIRNUMPORTS Returns the number of ports.

CMD_GETWAKESOURCE – Get Wake Source

Message ID: CMD_GETWAKESOURCE

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_SYS 0xFF System command

1 CMD_GETWAKESOUR

CE

0x17 Command ID - get wake source

Description

Requests the source of a device wake. For example, the wake might be due to the Sleep button

being pressed.

This command lets host know whether the user is present. If the user presses the Sleep button

and this causes the USB device to wake the system, then the firmware needs to internally store a

Boolean value that specifies the Sleep button as the source. When the CMD_GETWAKESOUCE

command is received from the host, the firmware returns the value of that Boolean and resets it

to false.

Response Description

RSP_GETWAKESOURCE Returns true if the Sleep button woke the

system.

CMD_GETEMVER – Get the Interface Version Used by the
Emulator

Message ID: CMD_GETEMVER

Message length: 2 bytes

Message direction: Host to device

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 96

Offset Name Value Description

0 CMD_PORT_SYS 0xFF System command

1 CMD_GETEMVER 0x22 Command ID - Get interface

version used by emulator

Description

This command is sent by the host to query which version of the emulator interface this device is

using. There are two ways to respond to this command:

 You can error out and return RSP_CMD_ILLEGAL. A properly-implemented

EMVER_EMULATOR_V1 device should do this. When the host receives the

RSP_CMD_ILLEGAL response, it will assume that the device is EMVER_EMULATOR_V1 and

treat it accordingly.

 You can respond with an RSP_EQEMVER response indicating the version of the emulator

interface that your device is using.

Response Description

RSP_EQEMVER Returns the interface version used by the

emulator

RSP_CMD_ILLEGAL Request is not supported because the emulator

uses EMVER_EMULATOR_V1

CMD_GETDEVDETAILS – Get Details about Device Capabilities

EMVER_EMULATOR_V2 only

Message ID: CMD_GETDEVDETAILS

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_SYS 0xFF System command

1 CMD_GETDEVDETAIL

S

0x21 Command ID - Get details about

device capabilities

Description

This command is sent by the host when the host wants to query the device about its capabilities.

Details about the capabilities that a device can return are in the RSP_EQDEVDETAILS section.

Response Description

RSP_EQDEVDETAILS Returns details about device capabilities

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

97

CMD_GETWAKESUPPORT – Get Details about Device Wake
Support

EMVER_EMULATOR_V2 only

Message ID: CMD_GETWAKESUPPORT

Message length: 2 bytes

Message direction: Host to device

Offset Name Valu

e

Description

0 CMD_PORT_SYS 0xF

F

System command

1 CMD_GETWAKESUPPO

RT

0x20 Command ID - get details about

device wake support

Description

This command is sent by the host when the host wants to query the device about its wake

capabilities. Details about the wake capabilities that a device can return are in the

RSP_EQWAKESUPPORT section.

Response Description

RSP_EQWAKESUPPORT Returns details about device wake capabilities

CMD_GETWAKEVERSION – Get Information about the Current
Wake Pattern

EMVER_EMULATOR_V2 only

Message ID: CMD_GETWAKEVERSION

Message length: 2 bytes

Message direction: Host to device

Offset Name Valu

e

Description

0 CMD_PORT_SYS 0xF

F

System command

1 CMD_GETWAKEVERSI

ON

0x18 Command ID - get information

about the current wake pattern

Description

This command is sent by the host when the host wants to query the device about its current wake

version. Details about the returned values can be found in the RSP_EQWAKEVERSION section.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 98

Response Description

RSP_EQWAKEVERSION Respond with details about current wake

pattern

Miscellaneous Commands

The miscellaneous commands are sent to the device over the EP1 OUT endpoint. Responses to

these commands are returned to the host over the EP1 IN endpoint.

The following miscellaneous commands are available:

 CMD_NOP – No operation.

 Flush

CMD_NOP – No Operation

Message ID: CMD_NOP

Message length: 2 bytes

Message direction: Host to device

Offset Name Value Description

0 CMD_PORT_SYS 0xFF System command

1 CMD_NOP 0xFF Command ID - no operation

Description

Does nothing. This operation is a No-Op. When the firmware receives this command, it should

ignore it and immediately re-enter its receive loop to receive the next command.

There is no response to this command.

Flush

Message ID: Flush

Message length: 1-31 bytes

Message direction: Host to device

Offset Name Value Description

0 PORT_SER +

Length

0xc0 -

0xDF

PORT_SER (0x6) is in the high

3 bits. The length of the data is

in the low 5 bits

1-31 Data Numbers Data to send. May be empty.

Description

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

99

The Flush command is used to synchronize the host with the device. The device should loop

back the same data to the host after the device is done processing all data. So, for instance, if

the device has an outgoing FIFO with IR data to transmit, and then it receives the flush

command, it should wait until the FIFO is empty before responding to the Flush command.

The first byte of this command has PORT_SER (0x6) in the upper three bits and the length of the

data in the lower five bits. So, if the host is sending zero bytes (a valid case), the command would

just be one byte long, as shown in the following table.

Offset Name Value Description

0 PORT_SER +

Length

0xC0 Upper three bits = 0x6. Lower

five bits = 0x00. Zero bytes of

data.

If the host is sending three bytes, the command would be four bytes long, as shown in this table.

Offset Name Value Description

0 PORT_SER +

Length

0xC3 Upper three bits = 0x6. Lower

five bits = 0x03. Three bytes of

data.

1 Data Number First byte of data

2 Data Number Second byte of data

3 Data Number Third byte of data

Response

The data, excluding the prefix, will be sent back to the host upon completion of the command.

Example

In a typical example, the host will send the sequence ―0xC1 0xC5 0xC0‖.

0xC1 means one byte of data following.

0xC5 is the one byte of data that you need to echo back.

0xC0 means zero bytes of data following; this is basically an EOF marker.

In response to this, the device will echo the data back. In this example, the host would return a

single byte: 0xC5.

Errors

No specific errors are returned.

Responses to Commands: Non-Error Cases

All responses in this section are returned to the host over the EP1 IN endpoint.

The following responses are available when there is no error:

 RSP_EQIRCFS – Respond with IR carrier for transmission.

 RSP_EQIRTIMEOUT – Respond with current IR time-out.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 100

 RSP_GETWAKESOURCE – Respond with wake source.

 RSP_EQIRTXPORTS – Respond with current transmit port mask.

 RSP_EQIRRXPORTEN – Respond with current IR receive port mask.

 RSP_GETPORTSTATUS – Respond with transmit port status.

 RSP_EQIRRXCFCNT – Respond with received carrier count information.

 RSP_EQIRNUMPORTS – Respond with number of ports.

 RSP_EQWAKESUPPORT – Respond with details about device wake capabilities.

 RSP_EQWAKEVERSION – Respond with details about the current wake pattern.

 RSP_EQDEVDETAILS – Respond with details about device capabilities.

 RSP_EQEMVER – Respond with the interface version used by the emulator.

RSP_EQIRCFS – Respond with IR Carrier for Transmission

Message ID: RSP_EQIRCFS

Message length: 4 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_IR 0x9F IR response

1 RSP_EQIRCFS 0x06 Response ID – respond with IR

carrier for transmission

2 CP Number Carrier prescalar

3 CC Number Carrier period

Description

This is the response used to return the carrier frequency to the host. Specifically, this sends the

carrier frequency used to transmit IR. The RSP_EQIRRXCFCNT response is used to send carrier

information to the host for received IR.

For a description of the prescalar and period values, see the topic CMD_SETIRCFS earlier in this

document.

RSP_EQIRTIMEOUT – Respond with Current IR Time-Out

Message ID: RSP_EQIRTIMEOUT

Message length: 4 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_IR 0x9F IR response

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

101

Offset Name Value Description

1 RSP_EQIRTIMEOU

T

0x0C Response ID – respond with

current IR time-out

2 TOH Number High byte of time-out value

3 TOL Number Low byte of time-out value

Description

This is the response used to return the IR time-out period to the host. For definitions of TOH and

TOL, see CMD_SETIRTIMEOUT earlier in this document.

RSP_GETWAKESOURCE – Respond with Wake Source

Message ID: RSP_GETWAKESOURCE

Message length: 3 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_SYS 0xFF System response

1 RSP_GETWAKESOU

RCE

0x17 Response ID – respond with

wake source

2 WAKE Numbe

r

1 if the device was responsible for

waking the system; 0 otherwise

Description

This is the response used to indicate whether the device woke the system.

RSP_EQIRTXPORTS – Respond with Current Transmit Port Mask

Message ID: RSP_EQIRTXPORTS

Message length: 3 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_IR 0x9F IR response

1 RSP_EQIRTXPORT

S

0x08 Response ID – respond with

current transmit port mask

2 P Number Bitmask with current transmit port

mask

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 102

Description

This is the response used to return the current transmit port mask to the host.

RSP_EQIRRXPORTEN – Respond with Current IR Receive Port
Mask

Message ID: RSP_EQIRRXPORTEN

Message length: 3 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_IR 0x9F IR response

1 RSP_EQIRRXPORT

EN

0x14 Response ID – respond with

current IR receive port mask

2 P Number Current port used for reception

Description

This is the response used to return the current receiver to the host. For a definition of P, see

CMD_SETIRRXPORTEN earlier in this document.

RSP_GETPORTSTATUS – Respond with Transmit Port Status

Message ID: RSP_EQPORTSTATUS

Message length: 7 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_SYS 0xFF System Response

1 RSP_GETPORTSTA

TUS

0x11 Response ID – respond with

transmit port status

2 P Number Port to return status for

3 VRH Number Volts-at-rest high

4 VRL Number Volts-at-rest low

5 VDH Number Volts-when-driven high

6 VDL Number Volts-when-driven low

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

103

Description

This is the response used to indicate whether something is plugged into a specific transmit port.

In the Microsoft-produced IR device, this was done by measuring voltage drop across the port.

By measuring volts-at-rest and volts-when-driven, the software could differentiate between IR

emitters and S-Link devices. For emulation devices, IR emitters are the only option. As a result,

physically measuring the presence of a plug in the jack is sufficient.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 104

To simplify matters, the following values should be returned.

Status VRH VRL VDH VDL

Emitter

connected

0x00 0x00 0x00 0x00

Emitter not

connected

0x00 0x00 0xFF 0x00

RSP_EQIRRXCFCNT – Respond with Received Carrier Count
Information

Message ID: RSP_EQIRRXCFCNT

Message length: 4 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_IR 0x9F IR response

1 RSP_EQIRRXCFCN

T

0x15 Response ID – respond with

received carrier count information

2 CH Number Carrier count high byte

3 CL Number Carrier count low byte

Description

After a time-out of reception on the learning receiver, this response is sent to tell the host the

carrier frequency of the previous sample. The CH and CL values form a 16-bit value that

specifies the count of cycles of the carrier. Carrier count can also be thought of as the number of

leading edges in the previous sample.

This is used by the host to calculate carrier frequency as follows:

int lastCarrierCount = ch*256+cl;

double carrier = ((double)lastCarrierCount) / irPacketOnDuration);

In this example, lastCarrierCount is computed by the host based on the values returned in this

response. irPacketOnDuration value is the total amount of time that the envelope for the signal

was high. This value is computed by the host and is implied by the shape of the RLC envelope

returned from the device since the last RSP_EQIRRXCFCNT response.

This response is unsolicited. It is returned by the receiver when IR arrives but is never explicitly

requested.

The carrier count is a count of pulses that occurred since the last time-out.

RSP_EQIRNUMPORTS – Respond with Number of Ports

Message ID: RSP_EQIRNUMPORTS

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

105

Message length: 3 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_IR 0x9F IR response

1 RSP_EQIRNUMPOR

TS

0x16 Response ID – respond with

number of ports

2 TXC Numbe

r

Count of transmit ports on device

3 RXC Numbe

r

Count of receive ports on device

Description

This is the response that tells the host how many transmit and receive ports your device has.

The numbers returned in this response are fixed. They should not change based on the state of

the device.

RSP_EQWAKESUPPORT – Respond with Details about Device
Wake Capabilities

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_EQWAKESUPPORT

Message length: 3 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_SYS 0xFF System response

1 RSP_EQWAKESUPP

ORT

0x20 Respond with details about

device wake capabilities

2 WAKECAPS Numbe

r

Byte with bitmask of

WakeSupportBits values

Description

This is the response in which the device tells the host how it supports wake, including the

programmability of the device, the protocols that the device supports, and the method of

programming.

The following bit values can be OR‘ed together and returned in the WAKECAPS field.

Name Valu

e

Description

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 106

Name Valu

e

Description

WAKE_SUPPORTED 0x01 The device supports wake from remote

WAKE_PROGRAMMABLE 0x02 The device wake algorithm is programmable

WAKE_MULTIPLE 0x04 The device supports wake from all required

protocol/key combinations without

programming.

WAKE_RC6 0x08 The device supports wake on RC6 key

WAKE_QP 0x10 The device supports wake on Quatro Pulse key

WAKE_DONTCARE 0x20 The device theoretically supports wake on all

protocols

WAKE_VOLATILE_PATTER

N

0x40 The device wake pattern is stored in volatile

memory and must be refreshed on every device

init

RSP_EQWAKEVERSION – Respond with Details about the Current
Wake Pattern

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_EQWAKEVERSION

Message length: 6 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_SYS 0xFF System response

1 RSP_EQWAKEVERSI

ON

0x18 Respond with details about the

current wake pattern

2 Protocol Numbe

r

The protocol for the current wake

pattern

3 Payload Numbe

r

The key code for the current

wake pattern

4 Address Numbe

r

Address for the current wake

pattern

5 Version Numbe

r

Version of the firmware for the

current wake pattern

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

107

Description

This is the response in which the device tells the host what wake pattern it is currently listening

for. This response could be based on factory programming or it could be based on run-time

programming of the device by the host using the CMD_BOOT_SETWAKEPATTERN or

CMD_BOOT_WRITEBLOCK bootloader commands.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 108

The following values are valid for the Protocol field:

Name Val

ue

Description

V2_WAKE_PROTOCOL_RC

6

0x0

1

Wake key uses the RC6 protocol.

V2_WAKE_PROTOCOL_QP 0x0

2

Wake key uses the Quatro Pulse protocol.

The following values are valid for the Payload field:

Name Val

ue

Description

WAKE_KEY_POWER_TOG

GLE

0x0

c

Button code for the Sleep toggle button

WAKE_KEY_DISCRETE_O

N

0x2

9

Button code for the discrete on button

The Address field should contain the address field in the wake pattern that it is listening for. Valid

values are 0-7 for RC6 and 0-15 for Quatro Pulse.

The Version field is only used when the wake pattern was programmed using the

CMD_BOOT_WRITEBLOCK method. When using this method, the Version number is extracted

from the firmware that was sent by the host. When not using this method, the Version number

should be returned as zero.

RSP_EQDEVDETAILS – Respond with Details about Device
Capabilities

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_EQDEVDETAILS

Message length: 3 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_SYS 0xFF System response

1 RSP_EQDEVDETAIL

S

0x21 Respond with details about

device capabilities

2 DEVDETAILS Number Byte with bitmask of

DeviceDetailsBits values

Description

This is the response that the device uses to communicate its capabilities to the host.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

109

The following bit values can be OR‘ed together and returned in the WAKECAPS field.

Name Val

ue

Description

DEVDETAILS_TIEDTOTUNER 0x0

1

The device is tied to a tuner (for instance,

the device is part of USB tuner/IR receiver

combination device)

DEVDETAILS_LEARNINGONLY 0x0

2

The device supports IR learning, but not

long-range IR reception

DEVDETAILS_NARROWBPF 0x0

4

Long-range receiver on the device has

narrow Band Pass Filter (BPF). Parse-

and-match remote identification is not

possible with the long-range receiver on

this device.

DEVDETAILS_NOINPUT 0x0

8

The device does not support IR input.

Long range receiver, if any, is only used

for parse-and-match remote identification.

DEVDETAILS_CANFLASH 0x1

0

The device supports the

CMD_FLASHLED command

DEVDETAILS_HASBOOTLOADE

R

0x2

0

The device has bootloader mode.

RSP_EQEMVER – Respond with the Interface Version used by the
Emulator

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_EQEMVER

Message length: 3 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_SYS 0xFF System response

1 RSP_EQEMVER 0x22 Respond with the interface

version used by the emulator

2 EMVER Number Emulator version number

Description

This response allows the device to tell the host which version of the emulator interface the device

implements. If the device responds with EMVER_EMULATOR_V1, or if the device responds to

CMD_GETEMVER with RSP_CMD_ILLEGAL, the host assumes that the device uses the version

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 110

1 emulator interface. In that case, the host does not send any of the EMVER_EMULATOR_V2-

only commands to the device.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

111

The following values are accepted in the EMVER field:

Name Value Description

EMVER_EMULATOR_V1 0x01 The device is using the old (Version 1)

emulator interface

EMVER_EMULATOR_V2 0x02 The device is using the newer (Version 2)

emulator interface.

RSP_FLASHLED – Respond Indicating that the Device
Successfully Flashed the LED

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_FLASHLED

Message length: 2 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_SYS 0xFF System response

1 RSP_FLASHLED

0x23 Respond indicating that device

successfully flashed the LED

Description

The device returns this response to the host after successfully flashing the LED in response to a

CMD_FLASHLED command.

Responses to Commands: Error Cases

All responses in this section are returned to the host over the EP1 IN endpoint.

The following responses are available when there is an error:

 RSP_CMD_ILLEGAL – Illegal command.

 RSP_TX_TIMEOUT – Error for transmit time-out.

RSP_CMD_ILLEGAL – Illegal Command

Message ID: RSP_CMD_ILLEGAL

Message length: 2 bytes

Message direction: Device to host

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 112

Offset Name Value Description

0 RSP_PORT_SYS or

RSP_PORT_IR

0xFF or

0x9F

System or IR response

1 RSP_CMD_ILLEGA

L

0xFE Response ID – illegal

command

Description

This response is sent when the command received does not exist for the given port.

This is a critical error. A CMD_RESUME command from the host is required to recover from this

error.

RSP_TX_TIMEOUT – Error for Transmit Time-Out

Message ID: RSP_TX_TIMEOUT

Message length: 2 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_PORT_IR 0x9F IR response

1 RSP_TX_TIMEOUT 0x81 Response ID – error for transmit

time-out

Description

This response is sent when the device runs out of data to send to a port before a Data End

command is received. The device must receive all of the data for a given transmission in a timely

fashion to send the data out as one contiguous signal.

This is a critical error. A CMD_RESUME command from the host is required to recover from this

error.

Illegal Command Handling

To ensure backwards and forwards compatibility, all emulator devices must properly respond to

illegal commands.

The "Commands and Responses" section briefly describes this behavior. This section contains

more detail.

If a command has an illegal lead byte or an illegal following byte, that command is considered

illegal. When a device receives an illegal command, it should return RSP_CMD_ILLEGAL and

wait for a CMD_RESUME before continuing normal operation.

The expected behavior is outlined in the following example:

// main firmware loop for normal operating mode

void mainLoop() {

 while (true) {

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

113

 // get next byte from host

 byte b = getNextByteFromHost();

 if (errorState) {

 // if we're in an error state, see if we can exit the error state

 // don't actually remove the next byte from the incoming buffer yet.

 if (peekNextByteFromHost() == CMD_RESUME) errorState = false;

 }

 // only do processing if we're not in error state

 if (!errorState)

 {

 // switch on command byte

 switch (b) {

 case CMD_PORT_IR: handleIrCommand(); break;

 case CMD_PORT_SYS: handleSysCommand(); break;

 case CMD_PORT_SER: handleFlush(); break;

 default:

 if ((b & 0xe0) == 0x90) {

 // If the high 3 bits are 100, this is an IR packet.

 // The length of the IR packet is in the low 5 bits

 blastIr(b & 0x1f);

 } else {

 // otherwise, it's an illegal command

 illegalCommand();

 }

 break();

 }

 }

 }

}

void handleIrCommand() {

 // get the next byte from the host.

 byte b = getNextByteFromHost();

 switch (b) {

 case CMD_SETIRCFS: HandleSetIrcfs(); break;

 case CMD_GETIRCFS: HandleGetIrcfs(); break;

 // add code here to handle all the other PORT_IR commands.

 default:

 // any other commands are errors

 illegalCommand();

 }

}

void illegalCommand() {

 // report the illegal command to the host

 sendRspCmdIllegalToHost();

 // set the device into an error state

 errorState = true;

This behavior will be tested as part of our test suites. The expected interaction is as follows:

1. Test sends an illegal command to the device.

2. Test validates the RSP_CMD_ILLEGAL response.

3. Test sends a flush command to the device.

4. Test validates that the device does not respond.

5. Test sends a CMD_RESUME command to the device.

6. Test sends a flush command to the device.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 114

7. Test validates that the device does respond.

Bootloader Implementation

To support wake programming, Version 2 emulator devices must have a bootloader. While in

bootloader mode, all normal device operation is suspended. The bootloader is entered when a

CMD_RESET command is received and exited when a CMD_BOOT_EXIT is received. The set of

commands that work in the bootloader are separate and distinct from the set of commands that

work in normal operating mode. There is no overlap between bootloader commands and normal

operation commands.

Enabling Bootloader Functionality

To enable the bootloader, the device must set the DEVDETAILS_HASBOOTLOADER bit in its

RSP_EQDEVDETAILS response. If the device does not set this bit, the host assumes that the

device does not have a bootloader and does not attempt to enter the bootloader.

The purpose of the bootloader is to support wake programming. All devices must set the

WAKE_SUPPORTED and WAKE_PROGRAMMABLE bits to communicate to the host that they

support wake programming. Supporting for wake programming is required.

Entering the Bootloader

The device should enter the bootloader when it receives the CMD_RESET command from the

host.

Exiting the Bootloader

The device should exit the bootloader when it receives the CMD_BOOT_EXIT command. After

exiting the bootloader, the device should re-initialize itself. It is possible that the host will issue a

CMD_RESET command followed immediately by a CMD_BOOT_EXIT command to reset the

device.

Wake Programming: CMD_BOOT_SETWAKEPATTERN

All devices that have a bootloader and support wake programming will receive

CMD_BOOT_SETWAKEPATTERN commands from the host. This command sends the protocol,

the payload, and the remote control address to the device. The device should use this

information as necessary to program its wake algorithm.

When designing your device, you have the following options for wake programming:

 Single pattern. In this case, the device does not set WAKE_MULTIPLE. When the host sets the

wake pattern using the CMD_BOOT_SETWAKEPATTERN command, the devices wakes on that

protocol, payload, and address only. This option is for devices that need to conserve power in a

low power state.

For example, a single-pattern device that receives CMD_BOOT_SETWAKEPATTERN with

protocol=RC6, Payload=0x0c, and Address=0x02 wakes on the RC6 Sleep toggle button from a

remote with address 2, but does not wake on any other Sleep signature.

 Multiple pattern. In this case, the device sets WAKE_MULTIPLE. When the host sets the wake

pattern using the CMD_BOOT_SETWAKEPATTERN, the device wakes on all Sleep buttons with

that address.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

115

For example, a multiple-pattern device that receives CMD_BOOT_SETWAKEPATTERN with

protocol=RC6, Payload=0x0c, and Address=0x02 wakes on four different keys: RC6 Sleep

toggle, RC6 discrete on, Quatro Pulse Sleep toggle, and Quatro Pulse discrete on. However, the

device only wakes on these keys if they have the address set to 0x02. Remotes with other

addresses must not wake the host.

In both cases, the device must examine the values passed with the

CMD_BOOT_SETWAKEPATTERN command and adjust its behavior based on those values.

Wake Programming: CMD_BOOT_WRITEBLOCK

If your firmware space and clock are limited, you can use custom wake firmware for each wake

pattern. This firmware can be installed in the registry on the host, and the device driver can use

the CMD_BOOT_WRITEBLOCK command to send the appropriate wake firmware from the host

to the device. The format of the registry data is entirely opaque to the driver. It sends a specific

block of data to the device when a given wake key is needed by the user.

With two protocols, two possible wake keys, and eight addresses, a given device will need 32

(2*2*8) separate firmware blocks in the registry.

No mechanism is provided to install the firmware into the registry on the host device. If you

choose to use this option, you must provide an installation mechanism to your customers.

If no registry value exists with the correct key, the host will skip the CMD_BOOT_WRITEBLOCK

write sequence. In this case, the device will probably fall back to default behavior and the user

may be left with a Sleep button on their remote control that does not wake the PC.

Firmware Write Sequence

This section describes the entire sequence from beginning to end for programming a new wake

pattern in an emulator device.

User Presses Sleep (formally Power) Button

The host driver tracks the type of Sleep button the user has (protocol, button code, and address).

When the user presses the Sleep button on the remote, the driver inspects the payload and notes

the type of Sleep button the user has. For example, the user has an RC6 remote with discrete

Sleep buttons set to address 3. When the user presses the ―discrete off‖ button, the host driver

notes that it must program the device to wake when it receives the RC6 ―discrete on‖ button with

address 3. The driver doesn‘t do anything with this information until later.

Host Enters Low-Power State

Because the user has pressed the Sleep button, the system enters a low-power state. The device

watches for whichever wake pattern it happens to be watching for. This wake pattern may or may

not be correct. The pattern may be the default wake pattern as chosen by the hardware

manufacturer.

Host Wakes, PNP Event Received by Host

The user wakes the host system. The device driver for the emulation device receives a PNP

event indicating that the device is once again available.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 116

Host Enters Bootloader

The host uses CMD_GETWAKEVERSION to request the wake pattern that the device is

currently using. If the device is using a wake pattern that does not match the pattern that the host

noted earlier, the host must reprogram the device with a different pattern. At this point, the host

sends a CMD_RESET to enter the device‘s bootloader. The host sends a

CMD_BOOT_GETVERSION to make sure that the device is in the bootloader.

Host Sends CMD_BOOT_SETWAKEPATTERN

Once in the bootloader, the host sends a CMD_BOOT_SETWAKEPATTERN command to the

device.

Host Sends CMD_BOOT_WRITEBLOCK

The host scans the registry to determine whether a firmware block is available for this device and

this specific wake pattern.

If a firmware block is not in the registry, the host continues to the next step.

If there is a firmware block in the registry, the host begins the CMD_BOOT_WRITEBLOCK

sequence:

 The host ―authorizes writing‖ using a CMD_BOOT_WRITEAUTH command. This sequence of

bytes is used to protect the firmware and to prevent random jumps from overwriting flash

memory. This process is explained below in more detail in the CMD_BOOT_WRITEAUTH

section.

 The host uses the CMD_BOOT_WRITEBLOCK to send multiple blocks of firmware to the device.

The registry data with the firmware contains a size parameter that instructs the host how to break

up the firmware into blocks. The host sends one CMD_BOOT_WRITEBLOCK command for each

block of firmware.

Host Exits Bootloader

The host sends a CMD_BOOT_EXIT command to exit the bootloader. The device resets itself

and the new wake firmware is applied.

User Presses Sleep Button Again

When the user presses the Sleep button a second time, the host determines from the Sleep

button that the device‘s wake pattern is correct. The host enters a low-sleep state. The next time

the user presses the Wake button on the remote, the device will recognize it and signal the host

to wake.

Registry Format For Firmware Blocks

Registry Key Location

Wake firmware is stored in the registry at the following location:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\usbcir\PowerKey

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

117

Registry Value Name

The firmware is stored in a REG_BINARY value using the following naming convention:

PowerKey-VIDPID-Protocol-KeyCode-Address

 VIDPID is your device‘s VID and PID concatenated as a hexadecimal value.

 Protocol is the protocol, in text. Valid values are RC6 or QP.

 KeyCode is the button code for the Wake key. Valid values are 0c or 29.

 Address is the remote address for the Wake key.

Registry Value Format

The registry value is a REG_BINARY value of arbitrary length.

The first eight bytes have specific meaning. The rest of the data is the firmware to download.

Offset Name Description

0 POWER_KEY_PROTOCOL Protocol for this Sleep key. One of the

V2_WAKE_PROTOCOL values.

1 POWER_KEY_PAYLOAD Payload for this Sleep key. Either

WAKE_KEY_POWER_TOGGLE or

WAKE_KEY_DISCRETE_ON.

2 POWER_KEY_ADDRESS Address for this Sleep key.

3 POWER_KEY_VERSION Version number of this Sleep key

firmware*.

4 POWER_KEY_BLOCKSIZE1 Block size MSB.

5 POWER_KEY_BLOCKSIZE2 Block size byte #2.

6 POWER_KEY_BLOCKSIZE3 Block size byte #3.

7 POWER_KEY_BLOCKSIZE4 Block size LSB.

8+ POWER_KEY_DATA Sleep key data. Must be an even

number of blocks defined by the

BLOCKSIZE parameter.

* The version number can be used to update the Sleep key firmware. If you need to fix wake

firmware in the field, you can increment the version number in the registry, which forces the host

driver to download the new firmware to the device.

The first 4 bytes of this response directly corresponds to the return value from

CMD_GETWAKEVERSION. The host performs a 32-bit comparison operation between the

CMD_GETWAKEVERSION response and the first four bytes in this registry value. If the values

are different, the host initiates a wake firmware download.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 118

Wake Firmware Registry Example

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\usbcir\PowerKey]

"PowerKey-045e00fe-RC6-0c-03"=hex:01,0C,03,01,\

 00,00,00,0C, \

 1F,00,12,34,56,78,91,23,45,67,00,A9,\

 1F,08,12,34,56,78,91,23,45,67,00,A9,\

 1F,10,12,34,56,78,91,23,45,67,00,A9

In this example, the VID is 0x045e, the PID is 0x00fe. This is the firmware for RC6, Sleep toggle

(button code = 0x0c), address = 3. Each download block is 12 bytes long. There are three 12-

byte download blocks in the firmware. The POWER_KEY_DATA information must be an even

number of blocks or the host will ignore the registry entry and does not attempt to program the

device.

The block format in this example is not the required format. You can choose any block format and

any length you want.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

119

Bootloader Example Pseudo-Code

This example assumes the same registry format used by the Wake Firmware Registry Example

section.

void handleSysCommand() {

 byte b = getNextByteFromHost();

 switch (b) {

 case CMD_GETPORTSTATUS: handleGetPortStaus(); break;

 case CMD_GETWAKESOURCE: handleGetWakeSource(); break;

 case CMD_RESET: handleReset(); break;

 // add code here to handle all the other PORT_SYS commands.

 default:

 // any other commands are errors

 illegalCommand();

 }

}

void handleReset() {

 // Reset write authorization before entering the bootloader

 writeAuth = 0;

 // on reset, run the bootloader

 runBootLoaderLoop();

 // Reset write authorization after exiting the bootloader

 writeAuth = 0;

 // then reset the device once we exit the bootloader

 resetDevice();

}

void runBootLoaderLoop() {

 while (true) {

 byte b = getNextByteFromHost();

 switch (b) {

 case CMD_BOOT_EXIT: return;

 case CMD_BOOT_GETVERSION: handleBootGetVersion(); break;

 case CMD_BOOT_WRITEAUTH:handleBootWriteAuth(); break;

 case CMD_BOOT_WRITEBLOCK: handleBootWriteBlock(); break;

 case CMD_BOOT_SETWAKEPATTERN:handleBootSetWakePattern(); break;

 default: break;

 }

}

void handleBootGetVersion() {

 // send the wake version to the host

 sendToHost(RSP_BOOT_VERSION,1);

}

void handleBootWriteAuth() {

 // get the write authorization from the host and save it for later.

 writeAuth = (getNextByteFromSource() << 24) +

 (getNextByteFromSource() << 16) +

 (getNextByteFromSource() << 8) +

 getNextByteFromSource();

}

void handleBootWriteBlock() {

 byte checksum = 0;

 byte data[8];

 // In our scheme, first 16 bytes are the destination address.

 uint address = (getNextByteFromSource() << 16) +

 getNextByteFromSource();

 // Next 8 bytes are firmware

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 120

 for (int i = 0; i < 8; i++) {

 // save the bytes

 data[i] = getNextByteFromSource();

 // compute a simple checksum

 checksum = checksum << 1;

 checksum ^= data[i];

 }

 // One byte of padding

 getNextByteFromSource();

 // Last byte is expected checksum

 byte expectedChecksum = getNextByteFromSource();

 // Make sure the checksum is correct

 if (checksum != expectedChecksum) {

 sendToHost(RSP_BOOT_BADSERIALCHECKSUM);

 return;

 }

 // Make sure we've been authorized to write.

 // (protects against random jumps)

 if (writeAuth != EMULATOR_WRITEAUTHSEQ) {

 sendToHost(RSP_BOOT_BADWRITEAUTH);

 return;

 }

 // Finally, program the hardware

 writeBlock(address,data);

}

It is recommended that you put writeAuth checks throughout your firmware writing code, which

helps to prevent a random jump from writing random values to your flash memory.

Wake Programming Example Sequence

This section contains an example programming sequence to further explain the communication

that initiates wake programming. One example is for a device that relies solely on

CMD_BOOT_SETWAKEPATTERN for wake programming, and does not have any wake

firmware in the registry. The second example is for a device that relies on

CMD_BOOT_WRITEBLOCK with wake firmware stored in the host registry.

Example #1 – No Wake Firmware in Registry

1. Host Sends: 0xff 0xfe (CMD_PORT_SYS, CMD_RESET)

2. (Device enters bootloader)

3. Host Sends: 0xf5 (CMD_BOOT_GETVERSION)

4. Device Responds: 0x04, 0x01 (RSP_BOOT_VERSION,1)

5. Host Sends: 0xef, 0x01,0x0c,0x03 (CMD_BOOT_SETWAKEPATTERN, RC6, Sleep Toggle,

Address 3)

6. Device Responds: 0xef (RSP_BOOT_SETWAKEPATTERN)

7. Host Sends: 0xf4 (CMD_BOOT_EXIT)

8. (Device resets itself)

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

121

Example #2 – Wake Firmware in Registry

This example assumes the same registry format used by the Wake Firmware Registry Example

section.

1. Host Sends: 0xff 0xfe (CMD_PORT_SYS, CMD_RESET)

2. (Device enters bootloader)

3. Host Sends: 0xf5 (CMD_BOOT_GETVERSION)

4. Device Responds: 0x04, 0x01 (RSP_BOOT_VERSION,1)

5. Host Sends: 0xef, 0x01,0x0c,0x03 (CMD_BOOT_SETWAKEPATTERN, RC6, (Sleep Toggle,

Address 3)

6. Device Responds: 0xef (RSP_BOOT_SETWAKEPATTERN)

7. Host Sends: 0xf6,0x23,0xca,0x67,0xd0 (CMD_BOOT_WRITEAUTH with

EMULATOR_WRAUTHSEQ values)

8. (Device saves authorization code, but does not respond)

9. Host Sends: 0xf0,0x1f,0x00,0x12,0x34,0x56,0x78,0x91,0x23,0x45,0x67,0x00, 0xa9

(CMD_BOOT_WRITEBLOCK followed by first block of firmware from registry example)

10. (device programs block at 0x1f00)

11. Device Responds: 0x01 (RSP_BOOT_BLOCKWRITTEN)

12. Host Sends: 0xf0,0x1f,0x08,0x12,0x34,0x56,0x78,0x91,0x23,0x45,0x67,0x00, 0xa9

(CMD_BOOT_WRITEBLOCK followed by second block of firmware from registry example)

13. (device programs block at 0x1f08)

14. Device Responds: 0x01 (RSP_BOOT_BLOCKWRITTEN)

15. Host Sends: 0xf0,0x1f,0x10,0x12,0x34,0x56,0x78,0x91,0x23,0x45,0x67,0x00, 0xa9

(CMD_BOOT_WRITEBLOCK followed by third block of firmware from registry example)

16. (device programs block at 0x1f10)

17. Device Responds: 0x01 (RSP_BOOT_BLOCKWRITTEN)

18. Host Sends: 0xf4 (CMD_BOOT_EXIT)

19. (Device resets itself)

Bootloader Commands

CMD_BOOT_EXIT – Exit the Bootloader

EMVER_EMULATOR_V2 ONLY

Message ID: CMD_BOOT_EXIT

Message length: 1 byte

Message direction: Host to device

Offset Name Value Description

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 122

Offset Name Value Description

0 CMD_BOOT_EXIT 0xF4 Command: Exit the bootloader

Description

When the device receives this command, it should exit the bootloader, reset the device, and

resume normal operation.

CMD_BOOT_GETVERSION – Get Bootloader Version

EMVER_EMULATOR_V2 ONLY

Message ID: CMD_BOOT_GETVERSION

Message length: 1 byte

Message direction: Host to device

Offset Name Valu

e

Description

0 CMD_BOOT_GETVERSI

ON

0xF5 Command: Return the firmware

version of the bootloader code

Description

Return the firmware version of the bootloader code. The actual version that is returned is

inconsequential. The host uses the RSP_BOOT_VERSION response as an indication that the

device has successfully entered the bootloader.

Response Description

RSP_BOOT_VERSION Return the bootloader version

CMD_BOOT_SETWAKEPATTERN – Set Wake Pattern

EMVER_EMULATOR_V2 ONLY

Message ID: CMD_BOOT_SETWAKEPATTERN

Message length: 4 bytes

Message direction: Host to device

Offs

et

Name Value Description

0 CMD_BOOT_SETWAKEPATTE

RN

0xef Command: Set the wake pattern

1 Protocol Numb

er

Protocol for the Wake button

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

123

Offs

et

Name Value Description

2 Payload Numb

er

Button code for the Wake button

3 Address Numb

er

Address for the Wake button

Description

This command tells the device what protocol, payload, and address to wake on.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 124

The following values are valid for the Protocol field:

Name Val

ue

Description

V2_WAKE_PROTOCOL_RC

6

0x0

1

Wake key uses the RC6 protocol

V2_WAKE_PROTOCOL_QP 0x0

2

Wake key uses the Quatro Pulse protocol

The following values are valid for the Payload field:

Name Val

ue

Description

WAKE_KEY_POWER_TOG

GLE

0x0

c

Button code for the Sleep-toggle button

WAKE_KEY_DISCRETE_O

N

0x2

9

Button code for the discrete-on button

The Address field should contain the address field in the wake pattern that it is listening for. Valid

values are 0-7 for RC6 and 0-15 for Quatro Pulse.

Response Description

RSP_BOOT_SETWAKEPATTERN Wake pattern set successfully

RSP_BOOT_BADPATTERN Bad wake pattern sent

CMD_BOOT_WRITEAUTH – Authorize Writing

EMVER_EMULATOR_V2 ONLY

Message ID: CMD_BOOT_WRITEAUTH

Message length: 5 bytes

Message direction: Host to device

Offset Name Valu

e

Description

0 CMD_BOOT_WRITEAUTH 0xF6 Command: Authorize writing

1 EMULATOR_WRAUTHSEQ

1

0x23 First authorization byte

2 EMULATOR_WRAUTHSEQ

2

0xC

A

First authorization byte

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

125

Offset Name Valu

e

Description

3 EMULATOR_WRAUTHSEQ

3

0x67 Second authorization byte

4 EMULATOR_WRAUTHSEQ

4

0xD

0

Third authorization byte

Description

Authorize firmware writes. The device should save the four auth bytes to a known location. Later,

when the device is about to commit changes to flash memory, the device should check the

known location to validate that the auth bytes match. This is intended to prevent random jumps

from overwriting flash memory.

The device does not respond to this command.

CMD_BOOT_WRITEBLOCK – Write Firmware Block

EMVER_EMULATOR_V2 ONLY

Message ID: CMD_BOOT_WRITEBLOCK

Message length: arbitrary

Message direction: Host to device

Offset Name Value Description

0 CMD_BOOT_WRITEBLO

CK

0xF0 Command: write a block to

firmware memory

1+ Firmware data Numb

er

Data to write to firmware memory

Description

The device should write the given data to firmware memory. The data comes from the registry on

the host. The device manufacturer should have placed this data into the registry. The device

manufacturer defines the block size and format of this data. It is expected that a destination

address will be encoded somewhere in the block and a checksum will be encoded somewhere in

the block. It is also possible that the device manufacturer will apply encryption to the data that it

places in the registry. Then, it is the responsibility of the device to decrypt the firmware before

storing it in flash memory.

Response Description

RSP_BOOT_BLOCKWRITTEN Block written successfully

RSP_BOOT_BADSERIALCHECKSUM Block not written: checksum was incorrect

RSP_BOOT_BADWRITEAUTH Block not written: write was not authorized

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 126

Bootloader Responses

RSP_BOOT_VERSION – Return Bootloader Version

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_BOOT_VERSION

Message length: 2 bytes

Message direction: Device to host

Offset Name Value Description

0 RSP_BOOT_VERSION 0x04 Response: return bootloader

version

1 Version Numb

er

Bootloader version

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

127

Description

The actual version returned is inconsequential. The host uses RSP_BOOT_VERSION response

as an indication that the device has successfully entered the bootloader.

RSP_BOOT_SETWAKEPATTERN – Wake Pattern Set Successfully

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_BOOT_SETWAKEPATTERN

Message length: 1 byte

Message direction: Device to host

Off

set

Name Val

ue

Description

0 RSP_BOOT_SETWAKEPATTE

RN

0xE

F

Response: Wake pattern set

successfully

Description

The device should return this response to the host after receiving the

CMD_BOOT_SETWAKEPATTERN request.

RSP_BOOT_BADPATTERN – Bad Wake Pattern Sent

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_BOOT_BADPATTERN

Message length: 1 byte

Message direction: Device to host

Off

set

Name Value Description

0 RSP_BOOT_BADPATTERN 0x05 Response: bad wake pattern sent

Description

The device should return this response to the host if it was unable to process the

CMD_BOOT_SETWAKEPATTERN request.

RSP_BOOT_BADWRITEAUTH – Bad Write Authorization Sent

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_BOOT_BADWRITEAUTH

Message length: 1 byte

Message direction: Device to host

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 128

Offse

t

Name Value Description

0 RSP_BOOT_BADWRITEA

UTH

0xF2 Response: Bad write authorization

sent

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

129

Description

The device should return this response to the host if a write operation was attempted without

being proceeded by a proper CMD_WRITEAUTH request.

RSP_BOOT_BLOCKWRITTEN – Firmware Block Written
Successfully

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_BOOT_BLOCKWRITTEN

Message length: 1 byte

Message direction: Device to host

Offs

et

Name Value Description

0 RSP_BOOT_BLOCKWRITT

EN

0x01 Response: block was successfully

written

Description

The device should return this response to the host when a block was successfully written to flash.

RSP_BOOT_BADSERIALCHKSUM – Bad Checksum in Firmware
Block

EMVER_EMULATOR_V2 ONLY

Message ID: RSP_BOOT_BADSERIALCHECKSUM

Message length: 1 byte

Message direction: Device to host

Off

set

Name Value Description

0 RSP_BOOT_BADSERIALCHECKS

UM

0xF0 Response: Bad checksum in

firmware block

Description

The device should return this response to the host if the checksum in the sent block was

incorrect.

Format for Transmitting and Receiving IR

This section contains information about formatting data for IR ports and for the Data End

message.

Data Format

Data for IR ports is encoded using a prefix byte and data bytes.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 130

The prefix byte contains the value 100 in the upper three bits and the data length in the lower five

bits. There can be as many as 30 bytes of data.

For the data bytes, the following format is used.

 [h l6 l5 l4 l3 l2 l1 l0]

IR data is coded in a series of run-length coded bytes. The h bit indicates whether the signal is

high (1, on - light produced/received) or low (0, off). Bits l6 through l0 form the number L which is

the duration, in IR sample periods, during which the signal is high or low. L can range from 1 to

127. If a signal is high or low for more than 127 samples, multiple run-length coding bytes with

the same h bit may be used. The IR sample period may be hard-coded in the firmware to 50

microseconds.

The IR LED is turned off when the Data End command is received. If no Data End command is

received, the device returns an RSP_TX_TIMEOUT error.

When sending IR, the transmitting IR ports are set using the Set IR Transmit Ports command.

When receiving IR, a Last Received Port message is sent before the Data End byte to identify

which IR port received the data.

IR Data End Message

For the data bytes, the following format is used.

 [1 0 0 0 0 0 0 0]

The Data End command indicates the end of a set of IR data.

When returning data received to the host, you must send this value at the end of the IR data. The

end of the IR data happens after there is a period of IR silence equal to the IR timeout value. The

Data End message must be sent after the RSP_EQIRRXPORTEN and RSP_EQIRRXCFCNT

messages.

When receiving data to transmit from the host, a Data End message will always indicate the end

of data. If you do not receive the Data End message, you should return RSP_TX_TIMEOUT to

the host.

Example: transmission

Because our sample period is 50 microseconds, 1 millisecond (ms) is 20 sample periods. So, our

IR signal would be on for 10 ms, then off for 20 ms, then on again for 10 ms. To send this IR to

port #1 with a 36 kHz carrier, the host would send the following sequence of bytes to the device:

// Set the output port.

[10011111] 0x9F CMD_PORT_IR – IR command

[00010100] 0x08 CMD_SETIRTXPORTS – set output ports

[00000001] 0x01 use the first port

// Set the carrier frequency – 36 kHz.

[10011111] 0x9F CMD_PORT_IR –IR command

[00000110] 0x06 CMD_SETIRCFS

[00000001] CP – 1 - carrier prescalar

[01000010] CF – 66 - carrier period

// Send the RLC.

[10001000] prefix byte – 8 bytes of IR data follows

[11111111] on for 127 sample (6.35 ms)

[11001001] on for 73 sample (3.65ms – bringing the total to 10 ms)

[01111111] off for 127 samples (6.35 ms)

[01111111] off for 127 samples (6.35 more ms – bringing the total to 12.7 ms)

[01111111] off for 127 samples (6.35 more ms – bringing the total to 19.05 ms)

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

131

[00010011] off for 19 samples (.95 more ms – bringing the total to 20 ms)

[11111111] on for 127 sample (6.35 ms)

[11001001] on for 73 sample (3.65ms – bringing the total to 10 ms)

// Send the data end.

[10000000] IR Port Data End

Example: reception

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 132

Assume, as in the previous example, the sample period is set to 50 microseconds. If the same

waveform is received, the device would return the following sequence to the host:

// IR Data:

[10001000] prefix byte – 8 bytes of IR data follows

[11111111] on for 127 sample (6.35 ms)

[11001001] on for 73 sample (3.65ms – bringing the total to 10 ms)

[01111111] off for 127 samples (6.35 ms)

[01111111] off for 127 samples (6.35 more ms – bringing the total to 12.7 ms)

[01111111] off for 127 samples (6.35 more ms – bringing the total to 19.05 ms)

[00010011] off for 19 samples (.95 more ms – bringing the total to 20 ms)

[11111111] on for 127 sample (6.35 ms)

[11001001] on for 73 sample (3.65ms – bringing the total to 10 ms)

// What port was used for reception:

[10011111] – 0x9F – RSP_PORT_IR

[00010100] – 0x14 - RSP_EQIRRXPORTEN

[00000010] – 0x02 – Wide-band receiver used.

// Carrier frequency:

[10011111] – 0x9F – RSP_PORT_IR

[00010101] - 0x15 - RSP_EQIRRXCFCNT

[00000010] – 0x02 – CH - Carrier count high

[11100100] – 0xE4 – CL – Carrier count low

// EOM

[10000000] IR Port Data End

The host then knows the envelope of the IR signal. It knows it was received in the learning

receiver. (This is redundant information because it was the host that told the device to listen with

the learning receiver.)

The host also has enough information to calculate the carrier frequency. It knows that the

envelope was high for 20 ms (from the RLC data), and it knows that there were 740 leading

edges in the signal (from the RSP_EQIRXCFCNT response). Because 740 /.02 = 37037, this IR

signal had a carrier frequency of about 37000 kHz.

As these examples illustrate, the IR data is broken into packets with a prefix byte indicating the

length of the packet. The maximum packet size is 31 bytes (1 prefix byte plus 30 bytes of data).

The minimum packet size is 2 bytes (1 prefix plus 1 byte of data). The firmware must decide how

to break the data into packets. In the preceding example, the total RLC was 6 bytes long and this

was in one packet. It is acceptable to break this into any number of packets. For example, if you

wanted to break the same data into 3 packets of 2 bytes each, you would have the following:

[10000010] prefix byte – 2 bytes of IR data follows

[11101000] on for 200 samples (10 ms)

[01111111] off for 127 samples (6.35 ms)

[10000010] prefix byte – 2 bytes of IR data follows

[01111111] off for 127 samples (6.35 more ms – bringing the total to 12.7 ms)

[01111111] off for 127 samples (6.35 more ms – bringing the total to 19.05 ms)

[10000010] prefix byte – 2 bytes of IR data follows

[00010011] off for 19 samples (.95 more ms – bringing the total to 20 ms)

[11101000] on for 200 samples (10 ms)

[10000000] IR Port Data End

Packet size does not need to be consistent, so, for example, 6 bytes could be broken into one

packet with 4 bytes and one packet with 2 bytes.

Suggested Firmware Memory Organization

It is recommended that you divide your firmware into the following four sections. This is not

required, but this is how the Microsoft-produced IR Transceiver Version 2 or IR Receiver Version

3 memory is divided.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

133

Bootloader

This section contains startup code, comm code, and the bootloader command switch. It has a

checksum as the last 4 bytes which is checked at startup.

Main

This section contains IR reception code, as well as system and IR command switches. The main

code is flash-upgradeable by the bootloader. It has a checksum as the last 4 bytes which is

checked at startup.

Config

This section contains the unique serial number for the device, all strings, and all USB descriptors.

It can be stored either in eeprom or in flash memory.

Sleep Key

This section contains firmware that runs under low power and watches for the Sleep key IR

pattern. It should be flash upgradeable.

Port Driver Requirements

Windows Media Center uses infrared (IR) both for basic control of the computer and for

controlling other IR-based devices used in conjunction with Windows Media Center. It's important

that you have a basic understanding of the IR functionality in Windows Media Center and how it

is used in conjunction with the software so that when you develop your hardware and port drivers

you understand how the hardware and software will work together.

Following are some important terms to know when reading this section:

Main IR Receiver

Wide-band IR receiver used to receive IR commands from the Windows Media Center remote

control and to translate those signals in order to interact with Windows Media Center.

Used in first run when the user is configuring a set-top box. The main IR receiver is used with the

parse-and-match functionality to recognize a set-top box remote control.

Learning IR Receiver

Used in first run when the user is configuring a set-top box. The Learning IR Receiver is a close-

range IR receiver that is used when Windows Media Center is unable to correctly identify the set-

top box remote control using parse-and-match. The user is then guided through a step-by-step

process so that Windows Media Center "learns" the numeric keys on the remote control so it can

control the set-top box.

IR Output

Used to send IR signals from the computer to control a set-top box. The IR signals sent through

the IR output port are sent either from a licensed IR database or from a user IR database, if the

user has gone through the IR learning process.

IR output is important for any customer trying to control a set-top box. There are two primary

scenarios that are important to Windows Media Center:

 The user wants to record a show when they are not at home. Windows Media Center needs

to be capable of changing the channel for the user.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 134

 The user uses a Media Center Extender in another room to watch television and they want to

change channels. The Windows Media Center computer needs to relay the command to the

set-top box.

Device Configuration Information

Used in first run to identify the type of receiver that is connected to the system and display

appropriate error messages to the user so they can set up their computer.

Basic CIR Architecture

Support for consumer infrared (CIR) remote controls is implemented in the Windows operating

systems by using a stack of drivers. Starting with Windows Media Center in Windows Vista, the

architecture of this driver stack has been both extended and simplified to facilitate support of non-

Microsoft CIR remote controls. The overall architecture of the CIR driver stack is shown in the

following diagram.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

135

Figure 27: The CIR driver stack

The preceding diagram shows the components that are used to support remote control

operations in Windows. Components provided by Microsoft are shown as blue-shaded blocks;

Windows Media Center partner-developed components are shown as white blocks. Both user-

mode and kernel-mode components are illustrated.

Windows support for CIR remote controls is anchored by the CIRClass driver. As shown in the

preceding diagram, the upper edge of this driver provides the interface to the rest of the Windows

system. As CIRClass receives data from underlying CIR Port drivers (such as USBCIR in the

diagram), it routes that data (according to its own algorithms) to user-mode Windows Media

Center components, to the human interface device (HID) stack, or to both of these destinations.

During "IR blasting" operations, CIRClass sends data to one or more specific CIR Port drivers.

The lower edge of CIRClass provides an interface to one or more CIR Port drivers, including the

Microsoft-supplied USBCIR driver. CIR Port drivers are responsible for controlling their CIR

remote control hardware, along with translating data for that hardware between the standard

format used by CIRClass (described in detail later in this document) and their hardware's

proprietary format.

The USBCIR driver supports standard Microsoft-defined CIR devices that connect to the

computer through USB. Continuing with our examination of the preceding diagram, USBCIR

interfaces with CIRClass at its upper edge, and with the standard Microsoft USB driver stack at

its lower edge.

Also shown in the preceding diagram is how an arbitrary, non-Microsoft-developed CIR remote

control fits into the Windows system of CIR support. Non-Microsoft CIR Port drivers interface with

the standard CIRClass driver at their upper edge, and with their hardware at their lower edge.

Note that the CIR Port driver may interact with its hardware either directly or indirectly, through an

additional set of drivers which may or may not be supplied by Microsoft. For example, a non-

Microsoft CIR Port driver would directly interface with a PCI-based non-Microsoft CIR remote

control (with the support of the standard Microsoft-supplied PCI bus driver). Alternatively, a non-

Microsoft USB-based CIR remote control would interact with its device indirectly through the

standard Microsoft-supplied USB driver stack.

Introduction to the CIRClass Framework

As described previously, the CIRClass driver is the interface between drivers that support one or

more Windows CIR devices and the rest of the Windows operating system. The CIRClass driver

provides a framework that centralizes common processing and simplifies the creation of CIR Port

drivers. To help describe that framework, this section will describe how CIRClass supports and

interfaces with the USBCIR driver supplied by Microsoft. The relationship between the device

objects created by these two drivers is shown in the following diagram.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 136

Figure 28: The device object relationship

In the preceding diagram, each device object is represented by either a circle or a square. Circles

represent Functional Device Objects (FDOs) and squares represent Physical Device Objects

(PDOs). The driver that creates each device object is shown on the left of the diagram, on the

same line as the device object that it creates. Attachment between device objects is illustrated by

a solid line between the attached device objects. Note that only the device objects that are

directly relevant to CIRClass and USBCIR are shown.

In the preceding diagram, note that CIRClass and USBCIR are separate drivers, each with its

own FDO. While not specifically shown in the preceding diagram, it's also important to note that

there is only one instance of the CIRClass driver (and one CIRClass FDO) irrespective of the

number of CIR Port drivers that are installed on a system. Thus, CIRClass does not provide a

"mini-driver"-based framework such as that provided by, for example, the HIDClass or StorPort

drivers. Rather, CIRClass supports CIR Port drivers that are independent function drivers. Thus,

CIR Port drivers are entirely responsible for controlling their hardware and act as the power policy

owner for their hardware devices.

CIR Port drivers are instantiated by the Windows Plug and Play Manager once the hardware

device that they support is detected. For example, the USBCIR driver is instantiated as a result of

the (standard Microsoft-supplied) USBHUB driver detecting that a supported USBCIR remote

control device has been plugged in. Thus, when the USBHUB driver detects a USBCIR remote

control device, it creates a PDO that describes this device and informs the Plug and Play

Manager of the device's existence. The Plug and Play Manager then loads the appropriate

function driver for the CIR device. In the preceding diagram, the driver that is loaded as a result

of this action is the USBCIR driver. When USBCIR starts, it creates an FDO and attaches that

FDO to the underlying device stack, according to the standard Windows practice.

Even though the CIRClass driver is available on all Windows systems, it is not installed until a

CIR Port driver is installed. Whenever a CIR Port driver is installed, a device- specific coinstaller

is invoked to install and start the CIRClass (if it has not already been installed and started). This

device-specific coinstaller, which is provided by Microsoft, must be invoked by all CIR Port drivers

as part of their installation procedure.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

137

Note that there is no direct connection (that is, no attachment) between the CIRClass and

USBCIR drivers. As a result, CIRClass engages in a handshaking exchange (described later in

this document) with each CIR Port driver as that port driver is started.

CIR Version 1 DDI and Version 2 DDI

A newer version of the Consumer IR Device Driver Interface (CIR DDI), called the version 2 DDI,

is being introduced with the release of Windows 7. The version 2 DDI is meant to replace and

augment the first CIR DDI, which was distributed with Windows Media Center in Windows Vista.

The version 2 DDI is a designed as a superset of the version 1 DDI with backwards and forwards

compatibility, which was designed for from the beginning. This compatibility will be discussed in

future sections.

Note on Documentation Conventions

Throughout this section, the version of the CIR DDI that was distributed with Windows Media

Center in Windows Vista will be referred to as the version 1 DDI. The newer DDI will be referred

to as the version 2 DDI.

If a section does not explicitly specify which version of the DDI it refers to, it can be assumed that

it applies to both the version 1 DDI and the version 2 DDI.

New sections that only apply to the version 2 DDI will be labeled version 2 DDI only.

Backwards and Forwards Compatibility

The version 2 DDI is designed to be both backwards and forwards compatible. This means that

the DDI that the port driver implements and the DDI that the class driver implements may be two

different versions, but if the port driver is written with backwards compatibility in mind, the drivers

should be able to adapt gracefully to these differences in versions.

Specifically, this means:

 A port driver that is written for the version 1 DDI will work with the version 2 DDI class driver with

absolutely no modification.

 A port driver that is written for the version 2 DDI is required to be aware that it may run on a

system with the version 1 DDI class driver and adjust its behavior accordingly.

Because version 2 DDI is a superset of the version 1 DDI, the first assertion is virtually

guaranteed. This works because the version 2 class driver inside of Windows Media Center is

aware of both the version 1 DDI and the version 2 DDI. If the version 2 class driver sees a

version 1 port driver, it is able to treat it as a port driver with limited capabilities. See the Proper

Implementation of Version 1 and Version 2 Devcaps section for more information about how DDI

versioning is accomplished.

On the other hand, a version 2 port driver may have capabilities that are unknown to the version

1 class driver. Specifically, a version 2 port driver may support features such as programmable

wake, blast-only, or narrow band pass filter (BPF). Because the version 1 class driver does not

implement these features, the driver writer needs to be aware that their port driver may run with a

version 1 class driver, but their device may not be able to function correctly in all circumstances.

Features Added to Version 2 DDI

The version 2 DDI was created to support additional device capabilities, allowing OEM partners

to create a wider variety of CIR devices with a wider variety of hardware capabilities.

Note that you will be bound by the requirements in the Windows Logo Program when building

your device.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 138

Additional protocol support

The version 2 class driver adds support for a newer remote control protocol. The SMK Quatro

Pulse protocol is now available as an option for remote controls manufacturers. Contact

remotemc@microsoft.com for details about licensing this protocol. In June 2009, all receiver

partners must be able to handle both the MC RC 6 and the MC SMK QP protocol per the

Windows Logo Program.

Dynamic wake programming

Hardware devices need to operate in extremely low-power situations while waiting for the Sleep

toggle or Wake button to turn the PC back on. In this low-power state, the hardware is often only

capable of watching for a single IR signature to wake the system. Because there are a wide

variety of options available for protocol and Sleep-button combinations (Sleep toggle versus

discrete Wake/Sleep), the system must be able to program the hardware dynamically to wake on

the correct Sleep button. The version 2 DDI adds a set of IOCTLs and capabilities flags to control

dynamic wake programming.

Dynamic active input device selection

The previous implementation of the IR class driver relied on the concept of an active input device.

This concept was used to prevent the host from receiving multiple key presses if multiple IR

receivers were present on the system. The heuristic used to determine which IR receiver was the

active IR receiver relied on the order of PNP events and was difficult for the end user to

comprehend. The version 2 class driver relies on a more dynamic mechanism to filter out

duplicate input if multiple receivers are present. With the version 2 class driver, there is no need

to switch the active input device because all IR receivers are active with the class driver filtering

out duplicate input.

Receiver capabilities: input only on long-range receiver

A partner may want to build a receiver device that uses a long-range receiver part with a narrow

band pass filter (BPF). This long-range receiver would allow IR input to function correctly, but

would not allow parse-and-match to function correctly.

Receiver capabilities: no input on long-range receiver

An OEM partner may want to build a receiver device that uses the long-range receiver part for

parse-and-match, but not for IR input. This might be desirable because the partner may be

distributing this receiver with a non-IR remote. In this case, the long-range receiver would be

used for parse-and-match operation, but not for IR input operation.

Receiver capabilities: no long-range receiver

An OEM partner may want to build a receiver device that does IR blasting and IR learning, but

they don't want to put a long-range receiver in it because remote control input is done using a

different device.

Receiver capabilities: no receiver at all (blasting only).

An OEM partner may want to build an IR device that doesn't do any IR receiving. This device

might only do IR blasting. This would be desirable for partners whose hardware might be with the

TV tuner hardware in a position where IR reception would be impossible (such as in a closet or in

the back of the PC).

Notes on the Updated Emulator Interface

In addition to the version 2 DDI, a newer IR emulator interface is also being published. This

newer emulator interface is related to version 2 DDI in that it defines the emulator protocol

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

139

necessary to support the version 2 DDI. However, it is not strongly tied to this DDI, meaning that

old emulators will still work with the newer version 2 DDI port driver.

CIRClass and CIR Port Interface Details

There are three mechanisms by which CIR Port drivers and the CIRClass driver interact. All

three mechanisms are required and must be implemented by every CIR Port driver.

The three mechanisms are:

Device-Specific Class Installer (used during installation): Whenever a CIR Port driver is

installed, it must invoke the Microsoft-supplied device-specific class installer for the CIRClass

driver. This installer installs and starts the CIRClass driver if it has not already been installed and

started (as a result of another CIR Port driver being installed).

Device Interface Registration and Enabling (used during initialization and teardown):

Whenever a CIR Port device is enumerated, the driver for that device must register and enable a

device interface for the CIR Port device, using device interface GUID

GUID_DEVINTERFACE_IRPORT. The CIRClass driver "listens" for devices to be enabled with

this interface and takes specific actions (described later) as a result. Typically, the CIR Port driver

registers the device interface within its Add Device routine and will enable the interface within its

IRP_MN_START_DEVICE processing code. Note that, if a CIR Port device is removed from the

system, the CIR Port driver must disable its device interface. (However, the device interface need

not be deleted.)

IOCTLs (used during initialization and normal operations): The CIRClass and CIR Port drivers

exchange data using a defined set of IOCTLs (that is, IRP_MJ_DEVICE_CONTROL requests),

that are described later in this document. Note that IOCTLs are the only type of I/O request that is

exchanged between CIRClass and CIR Port drivers. Standard read and write (IRP_MJ_READ

and IRP_MJ_WRITE) requests are not used.

CIR Port Driver Installation

The CIRClass driver and its associated INF file are present on all supported Windows systems.

However, the driver is neither installed nor started until a CIR Port device is installed. The

CIRClass driver is installed and started as a result of the CIR Port driver's INF file invoking the

CIRClass device-specific class installer. This device-specific coinstaller is named CIRCoInst.dll.

The installation procedure for all CIR Port drivers must invoke CIRCoInst.dll as a device-specific

coinstaller during their installation process. The INF command to invoke the coinstaller will be

similar to the following:

;

;--- usbcir_Device Coinstaller installation ------

;

[DestinationDirs]

IR_CoInstaller_CopyFiles = 11

[usbcir_Device.NT.CoInstallers]

AddReg=IR_CoInstaller_AddReg

CopyFiles=IR_CoInstaller_CopyFiles

;

; IR CoInstaller

;

[IR_CoInstaller_AddReg]

HKR,,CoInstallers32,0x00010008, "CIRCoInst.dll,IRCoInstaller"

[IR_CoInstaller_CopyFiles]

CIRCoInst.dll

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 140

CIR Port Device Initialization

As previously described, each CIR Port device will be loaded as a result of its device being

enumerated by the underlying bus driver. For example, the Microsoft-supplied USBCIR devices

are enumerated by the USBHUB driver.

Device Interface Registration and Enabling

As each CIR Port driver identifies an instance of a device it supports, it creates whatever FDOs it

requires. For each instance of an IR interface, each CIR Port driver must register and enable a

device interface using the GUID GUID_DEVINTERFACE_IRPORT.

It is important to note that a CIR Port driver should not enable this interface until its interface is

ready for use and it is ready and willing to receive requests from CIRClass. If a CIR Port driver

needs to delay between device discovery and enumeration and the device's ready state (to

POST the device, download microcode, interrogate or calibrate the device, and so on), it should

delay enabling its device interface until its device is ready to receive requests.

GUID_DEVICEINTERFACE_IRPORT is defined as follows:

// {064F8C82-77B2-445e-B85D-C4E20F942FE1}

DEFINE_GUID(GUID_DEVINTERFACE_IRPORT,

 0x64f8c82, 0x77b2, 0x445e, 0xb8, 0x5d, 0xc4, 0xe2, 0xf, 0x94, 0x2f, 0xe1);

CIRClass Handshaking with CIR Port Drivers

When CIRClass discovers an instance of a CIR Port device as a result of its device interface

being enabled, CIRClass will send a handshake IOCTL (IOCTL_IR_HANDSHAKE) to the newly-

created port device object instance. This IOCTL informs the CIR Port driver that its device has

been detected by CIRClass.

On receiving the IOCTL_IR_HANDSHAKE, the CIR Port driver must complete the request. When

this IOCTL is completed, CIRClass may start immediately sending IR-related requests to the new

CIR Port device instance. Note that a CIR Port driver may not delay completion of the

IOCTL_IR_HANDSHAKE IRP. This IRP must be completed immediately and synchronously

when received by IRPORT. If a CIR Port driver needs to delay before it is ready to receive

requests from CIRClass, it should delay enabling its device interface.

If the handshake operation fails, CIRClass will log an error and disregard that CIR Port device

instance.

Successful completion of the handshake signals a completed binding between CIRClass and a

given CIR Port device instance.

Device Capabilities for Version2 DDI

When CIRClass or other upper-level software requires the capabilities of the IR receiver, it sends

an IOCTL_IR_GET_DEV_CAPS request to the port driver. On receipt of this IRP, the port driver

must fill in the specific hardware capabilities and complete the IRP.

Because backward compatibility is required, a version 2 port driver may need to fill in a version 1

capabilities structure. Likewise, a version 1 port driver is required to (partially) fill in a version 2

capabilities structure.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

141

On receiving the IOCTL_IR_GET_DEV_CAPS request, the port driver must check the size of the

out buffer. If the out buffer is big enough to hold an IR_DEV_CAPS_V2 structure, the port driver

should assume that it is working with a version 2 class driver. It should fill in the entire

IR_DEV_CAPS_V2 structure, and set the IR_DEV_CAPS_V2.ProtocolVersion member to

DEV_CAPS_PROTOCOL_VERSION_V2 (0x200). If, however, the buffer is only big enough to

hold an IR_DEV_CAPS_V1 structure, the port driver should assume that it is working with a

version 1 class driver. It should fill in the IR_DEV_CAPS_V1 structure and set

IR_DEV_CAPS_V2.ProtocolVersion member to DEV_CAPS_PROTOCOL_VERSION_V1

(0x100). If the buffer is not big enough to hold an IR_DEV_CAPS_V1 structure, the port driver

should fail the IRP.

Proper Implementation of Version 1 and Version 2 Devcaps

The port driver is able to infer the DDI version of the class driver by looking at the size of the

output buffer in the IOCTL_IR_GET_DEV_CAPS request. By adjusting its behavior based on the

version of the DDI, the version 2 port driver is able to work with version 1 class drivers.

Likewise, a version 1 port driver must be able to work with a version 2 class driver. This is only

possible if the version 1 port driver has properly implemented the IOCTL_IR_GET_DEV_CAPS

handler correctly. Namely, the version 1 port driver must accept buffers that are larger than

sizeof(IR_DEV_CAPS_V1) and it must properly set the IR_DEV_CAPS_V1.ProtocolVersion

member to indicate that it subscribes to the (limited) version 1 DDI.

Wake Pattern Programming

When CIRClass wants to direct the hardware to wake on a specific signature, it sends an

IOCTL_IR_SET_WAKE_PATTERN IRP to the port driver. This IRP includes an

IR_SET_WAKE_PATTERN_PARAMS structure, which contains the details of the wake pattern

that the hardware needs to watch for. The port driver is responsible for programming the

hardware to watch for this wake pattern and it should not complete the IRP until the hardware

has been programmed. Because the wake programming may require a moderate amount of I/O

to the device, the port driver may need to return STATUS_PENDING for (to "pend") this IRP

while the programming is taking place.

Alternatively, the hardware may be designed to watch for all valid and required wake patterns. If

so, the port driver can ignore any IOCTL_IR_SET_WAKE_PATTERN IRPS as it already watches

for all required wake patterns.

There are two reasons to change the wake pattern:

 Choice of protocol. Remote controls are available using both the RC6 protocol and the Quatro

Pulse protocol. The wake hardware needs to be programmed to listen for the specific protocol

that is being used by the user‘s remote control.

 Choice of Sleep button. Most current Windows Media Center remote controls offer a single

Sleep button, which can either turn Windows Media Center on or off. This button is called a Sleep

toggle because it toggles the power state. However, the option exists to implement a pair of

discrete Sleep buttons, called discrete Sleep and discrete Wake. The discrete Sleep button will

put the PC into the sleep state, but it won‘t wake it up. The discrete Wake button will wake the

PC, but it won‘t put it to sleep. This is a very desirable feature for power users who want to

program remote control macros that are guaranteed to put the PC into a known state. If the user

has a remote control with a discrete Sleep/Wake button pair, the hardware must be programmed

to wake when the user presses the discrete Wake button.

CIRClass will start with a default wake pattern using the RC6 protocol with a Sleep toggle button,

since this is the most common remote control configuration. During the course of normal

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 142

operation, CIRClass will receive additional information in the form of remote control button

presses that may indicate that a different pattern should be used. When this happens, it will use

the IOCTL_IR_SET_WAKE_PATTERN IRP to reprogram the hardware.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

143

CIRClass is most likely to send an IOCTL_IR_SET_WAKE_PATTERN request in two

circumstances:

 When the drivers are being initialized, CIRClass tracks the current wake pattern across reboots

and sends the wake pattern to the port driver when the port driver loads.

 When the user presses a key that causes CIRClass to decide that a different wake pattern

should be used. This is likely to happen in two specific cases:

Change of protocol. If the wake pattern is currently set to RC6 and the user presses a button on

a Quatro Pulse remote control, CIRClass will reprogram the device to wake on the Quatro Pulse

Sleep toggle button.

Change of button code. If the user presses the discrete off button, CIRClass will assume that

the remote control has a discrete on button and program the hardware to respond to this button.

Notes

 Although unlikely, this can happen while the user is putting the PC into a low-power state.

Blocking the IOCTL_IR_SET_WAKE_PATTERN IRP for very long may cause the PC to

delay going into the low-power state.

 If the port driver is unable to program the hardware to wake on the specific button code before

the PC goes to sleep, the Sleep button on the remote control will appear to be broken, but

only that one time. The next time the driver loads, CIRClass will again attempt to program the

hardware to wake on the correct pattern.

The port driver is responsible for reporting its wake abilities using the appropriate bits in the

DevCapsFlags and WakeProtocols members of the IR_DEV_CAPS_V2 structure. For more

information, see the documentation for IR_DEV_CAPS_V2.

IR Port Driver and CIRClass Data Exchange

CIRClass and CIR Port drivers communicate and exchange data using IOCTLs and data

structures defined later in this document. Note that the only I/O requests that CIRClass sends to

a CIR Port driver are IOCTLs; read, write, and other I/O function codes are never used.

Data Format

The CIRClass driver exchanges IR data with CIR Port drivers in a standard format. This format is

referred to as "Run Length Coded" (RLC) format.

In run length coding, CIR data is encoded according to duration of high or low signal. These

durations are recording the demodulated signal (the envelope) and not the modulated signal.

Each LONG (32 bits) of the IR represents either a period of time that the signal is on or a period

of time that the signal is off. If the LONG is positive, the signal is on. If the LONG is negative, the

signal is off. The absolute value of the LONG is the duration of time that the signal is either high

or low.

Therefore, if the IR stream is high for 500 microseconds, low for 200 microseconds, and high for

150 microseconds (typically represented as "500 -200 150"), then the IR buffer contains the

following:

0x01F4 (500 microseconds high)

0xFF38 (200 microseconds low)

0x0096 (150 microseconds high)

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 144

Data Flow

This section provides an overview of the data exchange process that takes place between

CIRClass and a CIR Port driver. This overview will serve as an introduction to the topic, in

preparation for reading the sample CIR Port driver code, the IOCTL definitions, and the data

structure definitions.

While reading the overview in this section, keep in mind that the code for the example driver,

which is described in a later section of this document, provides the most detailed example of how

data is exchanged between a CIR Port driver and the CIRClass driver. That code is also the

ultimate authority on the rules of those exchanges, such that if any information in this document

differs from the sample implementation, the sample implementation should be considered

correct.

Receive Data

A CIR Port driver reads data from its IR device as a result of receiving an IOCTL_IR_RECEIVE

request from CIRClass. This IOCTL utilizes direct I/O, and thus its data buffer is described using

a Memory Descriptor List (MDL). The data buffer for the IOCTL_IR_RECEIVE request is

formatted as an IR_RECEIVE_PARAMS structure:

typedef struct _IR_RECEIVE_PARAMS {

 OUT ULONG_PTR DataEnd;

 IN ULONG_PTR ByteCount;

 OUT LONG Data[1];

}IR_RECEIVE_PARAMS, *PIR_RECEIVE_PARAMS;

Before sending the IOCTL_IR_RECEIVE request to the CIR Port driver, the CIRClass driver

initializes the fields in the IR_RECEIVE_PARAMS structure as follows:

 ByteCount – This field is set to the maximum number of data bytes that can be accommodated

in the receive data buffer.

When a CIR Port driver receives a packet of IR data from its hardware, it converts that data into

the RLC format previously described. It then returns the RLC data packet in the Data field of the

IR_RECEIVE_PARAMS structure.

Note that only two events can cause a CIR Port driver to consider an IR data packet "complete"

and therefore complete a pending IOCTL_IR_RECEIVE:

 The CIR Port driver completely fills the data buffer with IR data. In this case, the CIR Port driver

sets the DataEnd field of the IR_RECEIVE_PARAMS structure to FALSE.

 The IR sample period elapses, indicating the end of a stream of key presses. This sample period

is the time period that must elapse without IR data being received, after receiving one or more IR

key presses, before a "packet" of IR data is considered complete. In this case, the CIR Port driver

sets the DataEnd field of the IR_RECEIVE_PARMS structure to TRUE. The default timeout is

100 milliseconds.

In both cases, before completing the IOCTL_IR_RECEIVE request, the CIR Port driver sets the

ByteCount field of the IR_RECEIVE_PARAMS structure to the number of bytes of RLC-coded

data being returned in the data buffer. To complete the request, the CIR Port driver sets the

request's completion status to STATUS_SUCCESS and the request's information field to the

number of bytes returned in the IOCTL data buffer. Note that the byte count in the information

field includes both the RLC data bytes returned and the overhead of the IR_RECEIVE_PARMS

structure.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

145

Priority Receives

In most cases, during normal operations, the CIRClass driver will keep an IOCTL_IR_RECEIVE

in progress with the CIR Port driver. In some cases, Windows will need to start a new receive

operation that bypasses and leaves pending any IOCTL_IR_RECEIVE requests that might

already be in progress. This operation is referred to as a "Priority Receive."

The start of a Priority Receive operation is always indicated to a CIR Port driver by an

IOCTL_IR_ENTER_PRIORITY_RECEIVE request. IOCTL_IR_PRIORITY_RECEIVE passes the

CIR Port driver an IR_ENTER_PRIORITY RECEIVE structure, with the following format:

typedef struct _IOCTL_IR_ENTER_PRIORITY_RECEIVE_PARAMS {

 IN ULONG_PTR Receiver;

 IN ULONG_PTR TimeOut;

}IOCTL_IR_ENTER_PRIORITY_RECEIVE_PARAMS, *PIOCTL_IR_ENTER_PRIORITY_RECEIVE_PARAMS;

The Receiver field of the IR_ENTER_PRIORITY_RECEIVE structure indicates on which IR port

of the indicated IR device the receive should be performed. The TimeOut field of this structure

indicates the number of milliseconds that the CIR Port driver should use to determine IR data

packet completion for subsequent IOCTL_IR_PRIORITY_RECEIVE requests.

On receipt of an IOCTL_IR_ENTER_PRIORITY_RECEIVE request, a CIR Port driver enters

Priority Receive mode and proceeds as follows:

 Immediately stops processing any pending IOCTL_IR_RECEIVE requests for the indicated

device. Note that any pending IOCTL_IR_RECEIVE requests remain pending in the CIR Port

driver and are not completed by the CIR Port driver in response to this IOCTL.

 Does whatever processing on its device that may be necessary to set the new IR timeout value.

 Enables the device to use the proper receiver part for the priority receive.

 Queues any newly-arriving IOCTL_IR_RECEIVE requests for processing after leaving Priority

Receive mode.

 Completes the IOCTL_IR_ENTER_PRIORITY_RECEIVE as soon as its IR device is ready to

receive IR data with the new timeout value.

 Awaits receipt of an IOCTL_IR_PRIORITY_RECEIVE request, which should be immediately

forthcoming from the CIRClass driver, following completion of the

IOCTL_IR_ENTER_PRIORITY_RECEIVE request.

While in Priority Receive mode, the CIR Port driver processes IOCTL_IR_PRIORITY_RECEIVE

requests similarly to a standard IOCTL_IR_RECEIVE request. That is, the

IOCTL_IR_PRIORITY_RECEIVE request is completed when the specified timeout period

elapses or the supplied data buffer is full. Note that the IOCTL_IR_PRIORITY_RECEIVE data

buffer returned by a CIR Port driver contains an IR_PRIORITY_RECEIVE_PARAMS structure.

This structure has the following format:

typedef struct _IR_PRIORITY_RECEIVE_PARAMS {

 OUT ULONG_PTR DataEnd;

 IN ULONG_PTR ByteCount;

 OUT ULONG_PTR CarrierFrequency;

 IN LONG Data[1];

}IR_PRIORITY_RECEIVE_PARAMS, *PIR_PRIORITY_RECEIVE_PARAMS;

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 146

While in Priority Receive mode, any IOCTL_IR_RECEIVE requests that the CIR Port driver

receives must be queued for later processing. While in Priority Receive mode, any non-receive-

related requests (such as IOCTL_IR_TRANSMIT or other IOCTLs) are processed as normal;

Priority Receive mode only affects processing of receive-related packets. The only two receive-

related requests that are processed by the CIR Port driver while in Priority Receive mode are the

following:

 IOCTL_IR_PRIORITY_RECEIVE – Receiving this request indicates that the CIR Port driver

should continue with the current Priority Receive operation, using the timeout value that is

specified in the most recently received IOCTL_IR_ENTER_PRIORITY_RECEIVE request.

 IOCTL_IR_EXIT_PRIORITY_RECEIVE – Receiving this request indicates that the CIR Port

driver should exit Priority Receive mode and return to its normal mode receive processing. In this

case, the CIR Port driver does whatever processing is necessary to restore its previously-used

receive timeout period to its hardware. Following receipt of an

IOCTL_IR_EXIT_PRIORITY_RECEIVE request, a CIR Port driver returns to using the

IOCTL_IR_RECEIVE request that was pending before receipt of the

IOCTL_IR_ENTER_PRIORITY_RECEIVE (if there was one) for newly-arriving IR data.

Transmit Data

When Windows wants to send CIR data, it uses the IOCTL_IR_TRANSMIT request. Transmit

request processing is only a bit more complicated than processing a receive request.

IOCTL_IR_TRANSMIT uses both IOCTL data buffers. The input buffer (which uses buffered I/O)

contains an IR_TRANSMIT_PARAMS structure that describes the parameters for the transmit

request.

The format of this structure is as follows:

typedef struct _IR_TRANSMIT_PARAMS {

 IN ULONG_PTR TransmitPortMask;

 IN ULONG_PTR CarrierPeriod;

 IN ULONG_PTR Flags;

 IN ULONG_PTR PulseSize;

} IR_TRANSMIT_PARAMS, *PIR_TRANSMIT_PARAMS;

Note that the transmit port mask indicates on which ports of the indicated IR device the specified

data should be transmitted.

The IOCTL_IR_TRANSMIT data buffer, described by an MDL, is used to supply the data in RLC

format to be sent by the device controlled by the CIR Port driver. The data buffer comprises a

series of transmit "chunks," each of which is described by an IR_TRANSMIT_CHUNK structure

with the following format:

typedef struct _IR_TRANSMIT_CHUNK {

 ULONG_PTR OffsetToNextChunk;

 ULONG_PTR RepeatCount;

 ULONG_PTR ByteCount;

 LONG Data[1];

} IR_TRANSMIT_CHUNK, *PIR_TRANSMIT_CHUNK;

The repeat count indicates the number of consecutive times that the RLC data in the Data field of

the structure is to be transmitted. The number of bytes of RLC data in the Data field is indicates

by the ByteCount field of the structure.

The last chunk to be transmitted is identified by an OffsetToNextChunk field value of zero.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

147

CIR Port drivers are required to process IOCTL_IR_TRANSMIT requests synchronously. That is,

a CIR Port driver must not complete an IOCTL_IR_TRANSMIT request until all the data

described by that request has been transmitted.

Example CIR Port Driver – Hardware Design Requirements and Considerations

This section describes an example of requirements and considerations for designing a consumer

infrared (CIR) port driver.

Software Decoding of Infrared

Implicit to this driver model is that the infrared signal is decoded in software. Hardware that

decodes the infrared signal into a payload or keystroke is not supported in this model. This is

done for several reasons, including the following:

 Decoding the infrared signal in software allows us to decouple the receiver implementation from

the remote implementation. This way, any Windows Media Center-compatible remote will work

with any Windows Media Center-compatible receiver. There is no reason to modify the receiver

hardware to support a new remote protocol.

 Multiple infrared remote (IR) protocols can be supported simultaneously. There is no need to put

the receiver into "Protocol #1 mode" or "Protocol #2 mode". The software that decodes the

protocol can decode numerous protocols and doesn't need to be put into a specific protocol

mode.

 Returning remote line controller (RLC) data allows us to do learning and parse-and-match in a

hardware-independent way. The learning algorithm is implemented in software, as is the IR

database, thus ensuring a consistent learning experience across hardware implementations.

 Filtering of input can happen in software. This is useful, for instance, when a single computer has

multiple IR receivers (all the more likely now, considering current MPEG encoder cards are

already being distributed with their own IR receiver.). In this case, the IR driver stack is smart

enough to realize that there are multiple receivers and that it can ignore input from one of the

receivers, thus preventing the user from seeing multiple responses from a single key press.

Another place this is useful is in remote addressing. It is not hard to imagine multiple Windows

Media Center computers in a store environment, or in an enthusiast's home. In that case, the

Windows Media Center software can be configured to only accept input from a given remote

control. This way, remote control #1 can control computer #1 exclusively and remote control #2

can control computer #2 exclusively.

Sampling Resolution

When receiving IR or transmitting IR, your hardware needs to operate with a 50-microsecond

resolution. When transmitting, this means that you can effectively round the RLC durations to the

nearest 50 microseconds. When receiving, this means that you only need to return RLC that is

accurate to 50-microsecond durations.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 148

Differences between Learning (Wide Band) Receiver and Long Range (Narrow
Band) Receiver

There are two types of light detectors needed for an IR transceiver:

 Long Range Receiver. This is the receiver that is used during normal operation of Windows

Media Center. It is designed to receive input from 3 to 30 feet away. It de-multiplexes the signal

in hardware. It is optimized to receive a 36 kilohertz (kHz) signal, but it can also receive a

(degraded) signal from 30 kHz to 60 kHz (or more).

If your long-range receiver has a narrow band pass filter (BPF), you must set the

V2_DEV_CAPS_NARROW_BPF bit. Note that this results in a less-than-optimal experience for

uses while setting up Windows Media Center for set-top box control because they will have to

complete the long learning process instead of the shorter parse-and-match process.

 Learning Receiver. This is the receiver that is used during IR Learning. It is designed to be used

from 2 inches away. It does not de-multiplex the signal in hardware. It is optimized to receive a

signal from 30 kHz to 60 kHz (or more).

If your IR transceiver is input only (no blasting and therefore no learning), a long-range receiver is

required. If your IR transceiver also does IR output (blasting), both a long-range and learning

receiver are required.

Emitter Detection

When responding to the IOCTL_IR_GET_EMITTERS request, the hardware only needs to detect

if something is plugged into the emitter port. If, for instance, a user plugs a pair of headphones

into an emitter port, it is acceptable to return that an emitter is detected in that port.

Emitter Multiplexing

In reading the reference for IOCTL_IR_TRANSMIT, you may notice that the transmit port is a

bitmask. This means that it's possible to transmit to two different emitter ports with the same

IOCTL. There is some freedom for design here. If your hardware can only output to one port at

the same time, and the IOCTL is asking you to transmit to two ports, your driver can first transmit

to the first transmit port and then transmit to the second port.

Pulse Mode Remotes

Pulse mode is no longer required.

Wake From Remote

To support the "Wake From Remote" feature, your hardware needs to do several things:

 It must resume from standby mode using the Sleep button for the particular IR protocol for which

the hardware is optimized. Resume-from-standby must do hardware decoding of the protocol and

operate when the Windows Media Center computer is in a state of lower power consumption.

 It must wake from S1 or S3. Resuming or waking from S4 or S5 is optional.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

149

 Power consumption requirements are defined by the bus and architecture used by the IR

receiver. For example, USB allows 2.5 mA during suspend and a variable amount of current

depending on whether it is a high-power or lower-power device.

 If using a USB device, it is recommended that the device be able to operate correctly when it is

plugged into a passive hub.

 It must properly indicate user presence to the operating system when waking the system. This

can be tested by first waking the system with the remote control, and then by running a

scheduled task. The monitor should turn on when waking from the remote control, but not when

waking from running a scheduled task

 It needs to fire a hardware interrupt to wake the system when it sees the Sleep key's IR

signature.

 It needs to be software-configurable. Depending on what IR protocol is being used, the IR

signature for the Sleep key can change from computer to computer. This signature is stored in

the registry. The IR port driver needs to take this information from the registry and program the

hardware to wake on this signature.

 It needs to call PoSetSystemState(ES_USER_PRESENT) when the device causes the system to

wake up. This call causes the computer to turn on video and audio. It is important to do this only

when the user presses the Sleep button on the remote. Because this call causes video and audio

to start playing, implementing it incorrectly could cause the computer to turn on and play music in

the middle of the night.

Wake Signatures

A wake signature is an IR pattern that represents a remote control key that can wake the PC from

a low-power state. There are different wake signatures required for device operation:

 RC6 Protocol, Sleep Toggle Key (most common and currently the default signature)

 RC6 Protocol, Discrete Wake

 Quatro Pulse Protocol, Sleep Toggle Key

 Quatro Pulse Protocol, Discrete Wake

Note that there is no wake signature for the Discrete Sleep keys because these keys are

designed to put the PC into a low-power state. They are not designed to wake the PC from a low-

power state, so they are not included in the list of wake patterns.

It is worth noting that the payloads for these patterns have a number of bits that aren‘t significant

for wake functioning. The implementation should be aware of these bits and ignore them

accordingly.

 The RC6 protocol has a toggle bit. The wake pattern decoding should ignore this toggle bit.

 The Quatro Pulse protocol has a checksum bit. The wake pattern decoding should ignore this

checksum bit.

These bits are indicated in the table below.

Note It is important to implement these bits properly—specifically the address bits. Many wake

implementations have failed to implement these properly in the past.

Protocol Button Button

Code

Payload Don’t Care

Bits

RC6 Sleep 12 Customer Toggle Bit

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 150

Protocol Button Button

Code

Payload Don’t Care

Bits

Toggle Code=32783

System=4

Address=Address*

KeyCode=12

RC6 Discrete

Wake

41 Customer

Code=32783

System=4

Address=Address*

KeyCode=41

Toggle Bit

Quatro

Pulse

Sleep

Toggle

12 Flag=2**

ID = Address*

Maker=0x22

Device=0x01

Extension=0x00

KeyCode=12

Checksum

Quatro

Pulse

Discrete

Wake

41 Flag=2**

ID = Address*

Maker=0x22

Device=0x01

Extension=0x00

KeyCode=41

Checksum

* The Address field is specified by the host through the Address member of the

IR_SET_WAKE_PATTERN_PARAMS structure. When the port driver receives an

IOCTL_IR_SET_WAKE_PATTERN IRP, it should program the hardware to listen for the address

as specified in this structure. If no IOCTL_IR_SET_WAKE_PATTERN has ever been received by

the port driver, the hardware needs to default to all addresses. If the hardware stores the address

in volatile memory, the port driver needs to persist the address value across reboots and

reprogram the hardware as necessary.

** The Flag field in a Quatro Pulse payload is specified to change based on the number of high

bits in the payload. A complete implementation would require the hardware to adjust the

interpretation of mark/space timing according to the value of the Flag field. Because of the

specific payloads that are used, your hardware does not need to be concerned about the Flag

value ever being set to "Reversed".

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

151

Wake Programmability Options

The following options are available for building your hardware:

 One protocol, one button only, not programmable (version 1 DDI or version 2 DDI). In this option,

your hardware is basically hard-wired to respond to a single wake pattern. Note that this option is

not allowed in Windows 7. In future Windows Logo program detail, this option will eventually be

eliminated in its entirety. If you do this with the version 2 DDI, you should make sure that the

V2_DEV_CAPS_PROGRAMMABLE_WAKE bit is not set.

 All protocols, all buttons, programmable (version 2 DDI only). In this option, you support a

programmable wake pattern, but your hardware can only respond to a single wake pattern. If you

do this, be sure to set the V2_DEV_CAPS_PROGRAMMABLE_WAKE bit and be sure to

indicate which protocols your hardware supports by setting the appropriate bits in the

IR_DEV_CAPS_V2.WakeProtocols variable.

 This second option

is the Microsoft recommended method.

 All protocols, all buttons, simultaneous decoding (version 1 DDI or version 2 DDI). In this option,

you must program your hardware to respond to all valid wake patterns simultaneously. If you do

this, be sure to set the V2_DEV_CAPS_MULTIPLE_WAKE bit. Note that if you choose this

option, your device will still need to be programmable because the Address field can change and

you must filter wake patterns based on the Address field.

IOCTL Definitions

This section describes the specific IOCTLs that the CIRClass driver uses to communicate with

CIR Port drivers. Note that support of all IOCTLs is mandatory, unless a given IOCTL specifically

indicates that its implementation is optional.

IOCTL_IR_ENTER_PRIORITY_RECEIVE

User Scenario

This puts the IR receiver into learning mode for parse and match as well as for learning of

individual buttons (IR learning short range).

Operation

This request is sent to prepare the port to enter Priority Receive mode. While the device is in

Priority Receive mode, all IOCTL_IR_RECEIVE requests should be starved and

IOCTL_IR_PRIORITY_RECEIVE requests should be completed.

Input

Irp->AssociatedIrp.SystemBuffer points to an IR_ENTER_PRIORITY_RECEIVE_PARAMS

structure containing parameters for the Priority Receive operation.

Output

None.

I/O Status Block

The Information field is set to zero.

The Status field is set to STATUS_SUCCESS or an appropriate error status.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 152

For more information, see IR_ENTER_PRIORITY_RECEIVE_PARAMS,

IOCTL_IR_EXIT_PRIORITY_RECEIVE, and IOCTL_IR_PRIORITY_RECEIVE.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

153

IOCTL_IR_EXIT_PRIORITY_RECEIVE

User Scenario

This is used to transfer the device from learning mode back into basic receive mode.

Operation

This request is sent to end Priority Receive mode. Upon receipt of the request, the port should

abort any outstanding IOCTL_IR_PRIORITY_RECEIVE requests and fail any future

IOCTL_IR_PRIORITY_RECEIVE requests (before receiving a new

IOCTL_IR_ENTER_PRIORITY_RECEIVE request). As a result of receiving this IOCTL, the CIR

Port driver is responsible for restoring the device to the state that it was in before receipt of the

IOCT_IR_ENTER_PRIORITY_RECEIVE.

Input

None.

Output

None.

I/O Status Block

The Information field is set to zero.

The Status field is set to STATUS_SUCCESS or an appropriate error status.

For more information, see IOCTL_IR_ENTER_PRIORITY_RECEIVE and

IOCTL_IR_PRIORITY_RECEIVE.

IOCTL_IR_FLASH_RECEIVER

User Scenario

This is used to give the user a visible indication of where to point the receiver.

Operation

Flash an LED on the given receiver. Used to tell the user where to point the remote, so a given

"receiver box" with multiple receiver parts only needs one LED to flash.

Important This is highly recommended as a key user scenario.

Input

Irp->AssociatedIrp.SystemBuffer contains a pointer to a 32-bit bitmask of receivers to flash.

Output

None.

I/O Status Block

The Information field is set to zero.

The Status field is set to STATUS_SUCCESS if the operation is completed successfully.

IOCTL_IR_GET_DEV_CAPS

User Scenario

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 154

Used during driver load and in first run to determine what hardware is connected to the system

and if that hardware supports the functionality the user is trying to configure.

Operation

Returns device capabilities in the IR_DEV_CAPS_V1 or IR_DEV_CAPS_V2 structure.

The port driver should examine the size of the output buffer. If the output buffer is big enough to

hold an IR_DEV_CAPS_V2 structure, the port driver should fill in the IR_DEV_CAPS_V2 values,

set ProtocolVersion to DEV_CAPS_PROTOCOL_VERSION_V2, and set the Information field

for sizeof(IR_DEV_CAPS_V2). If the buffer is only big enough to hold an IR_DEV_CAPS_V1

structure, the port driver should fill in the IR_DEV_CAPS_V1 values, set ProtocolVersion to

DEV_CAPS_PROTOCOL_VERSION_V1, and set the Information field to

sizeof(IR_DEV_CAPS_V1).

Input

None.

Output

Irp->AssociatedIrp.SystemBuffer points to an IR_DEV_CAPS_V1 or IR_DEV_CAPS_V2

structure to be filled in by the port driver.

I/O Status Block

The Information field is set to sizeof(IR_DEV_CAPS_V1) or IR_DEV_CAPS_V2 if successful.

The value of this result depends on the size of the buffer passed as indicated above.

The Status field is set to STATUS_SUCCESS if the operation is completed successfully. It may

also be the following value:

STATUS_BUFFER_TOO_SMALL - The supplied output buffer is too small to be an

IR_DEV_CAPS_V1 or IR_DEV_CAPS_V2 structure.

For more information, see IR_DEV_CAPS_V1 and IR_DEV_CAPS_V2.

IOCTL_IR_GET_EMITTERS

User Scenario

Used in first run to identify how many emitters are connected to the system and which ports have

emitters connected.

Operation

Gets attached emitters and returns the information in a bitmask. This needs to return timely

information. It is expected that the user will plug and unplug emitters during the operation of the

PC, so it is necessary to query the hardware at the time of the call.

Input

None.

Output

Irp->AssociatedIrp.SystemBuffer. Contains a pointer to a 32-bit value to be filled in with a

bitmask representing the attached emitters.

I/O Status Block

The Information field is set to sizeof(ULONG) if the operation is successful.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

155

The Status field is set to STATUS_SUCCESS if the operation is completed successfully. It may

also be the following value:

STATUS_BUFFER_TOO_SMALL - The supplied output buffer is too small to be a ULONG.

IOCTL_IR_HANDSHAKE

User Scenario

User plugs device into computer.

Operation

This IOCTL is sent from CIRClass before creating the HID child device to represent the port. This

IOCTL is to be completed synchronously by the port as an indication that it is prepared to return

RLC IR data to the class driver.

Input

None.

Output

None.

I/O Status Block

The Information field is set to zero.

The Status field is set to STATUS_SUCCESS.

IOCTL_IR_PRIORITY_RECEIVE

User Scenario

Data sent from learned remote control to the class driver.

Operation

This request is sent from CIRClass and receives Run Length Coded (RLC) IR data when the

device is running in Priority Receive mode. If the device is not already in Priority Receive mode,

initiated by having previously received an IOCTL_ENTER_PRIORITY_RECEIVE, the CIR Port

driver fails this request immediately. If in Priority Receive mode, the request will remain pending

until one of two events occurs:

 The data buffer provided in the request has been completely filled with data.

 An IR timeout occurs. The length of time required for the IR timeout was specified when entering

Priority Receive mode.

While in Priority Receive mode and processing IOCTL_IR_PRIORITY_RECEIVE requests,

IOCTL_IR_RECEIVE requests remain pending and are not filled with IR data.

Input

None.

Output

Irp->MdlAddress contains a variable length IR_PRIORITY_RECEIVE_PARAMS structure.

I/O Status Block

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 156

The Information field is set to the actual number of bytes copied into the supplied data buffer,

including the IR_PRIORITY_RECEIVE_PARAMS structure.

The Status field is set to STATUS_SUCCESS if the operation is completed successfully. It may

also be one of the following values:

STATUS_INVALID_DEVICE_STATE - The device is not in Priority Receive mode.

STATUS_BUFFER_TOO_SMALL - The supplied output buffer is too small to be an

IR_PRIORITY_RECEIVE_PARAMS structure.

STATUS_INVALID_BUFFER_SIZE – The ByteCount field of the

IR_PRIORITY_RECEIVE_PARAMS structure is larger than the output buffer size specified in

the request.

For more information, see IR_PRIORITY_RECEIVE_PARAMS,

IOCTL_IR_ENTER_PRIORITY_RECEIVE, IOCTL_IR_EXIT_PRIORITY_RECEIVE, and

IOCTL_IR_RECEIVE.

IOCTL_IR_RECEIVE

User Scenario

Basic remote commands coming in from a remote control.

Operation

This request is sent from CIRClass and receives Run Length Coded (RLC) IR data when the

device is not running in Priority Receive mode. When running in Priority Receive mode, these

requests remain queued but receive no data.

An IOCTL_IR_RECEIVE request remains pending until one of two events occurs:

 The data buffer provided in the request has been completely filled with RLC IR data.

 An IR timeout occurs. In the case of an IR timeout, the DataEnd member of the output structure

is set to TRUE. The default timeout is 100 milliseconds.

Input

None.

Output

Irp->MdlAddress contains a variable length IR_RECEIVE_PARAMS structure.

I/O Status Block

The Information field is set to the actual number of bytes copied into the supplied data buffer,

including the IR_RECEIVE_PARAMS structure.

The Status field is set to STATUS_SUCCESS if the operation is completed successfully. It may

also be one of the following values:

STATUS_BUFFER_TOO_SMALL - The supplied output buffer is too small to be an

IR_RECEIVE_PARAMS structure.

STATUS_INVALID_BUFFER_SIZE – The ByteCount field of the IR_RECEIVE_PARAMS

structure is larger than the output buffer size specified in the request.

For more information, see IR_RECEIVE_PARAMS and IOCTL_IR_PRIORITY_RECEIVE.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

157

IOCTL_IR_RESET_DEVICE

User Scenario

Not documented in this release.

Operation

Resets the given device. When a device is reset, all pending transmit and receive IOCTLs are

canceled by the port driver. Additionally, the power driver should re-initialize the hardware to the

default state.

Input

None.

Output

None.

I/O Status Block

The Information field is set to zero.

The Status field is set to STATUS_SUCCESS if the operation is successful. May also return an

appropriate error if communication with the device fails.

IOCTL_IR_TRANSMIT

User Scenario

Used to send IR data to control a set-top box.

Operation

Transmits the given IR stream on the given ports at the given carrier frequency. This IOCTL is

synchronous. It does not return until the IR has actually been transmitted.

Input

Irp->AssociatedIrp.SystemBuffer points to an IR_TRANSMIT_PARAMS structure, describing

the state the device should be in while the data is transmitted.

Irp->MdlAddress contains a variable length IR_TRANSMIT_CHUNK structure.

Output

None.

I/O Status Block

The Information field is set to the total number of bytes written.

The Status field is set to STATUS_SUCCESS if the operation is completed successfully. It may

also be the following value:

STATUS_INVALID_PARAMETER - The carrier period in the parameters structure is zero, or

some other parameter is incorrect.

For more information, see IR_TRANSMIT_PARAMS and IR_TRANSMIT_CHUNK.

IOCTL_IR_USER_CLOSE

User Scenario

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 158

No user scenario. Part of basic device communication.

Operation

This IOCTL is sent from IRCLASS when a user has indirectly closed the port driver. This IOCTL

is informational only, allowing the port to do any cleanup required when closed by a user.

Input

None.

Output

None.

I/O Status Block

The Information field is set to zero.

The Status field is set to STATUS_SUCCESS.

For more information, see IOCTL_IR_USER_OPEN.

IOCTL_IR_USER_OPEN

User Scenario

No user scenario. Part of basic device communication.

Operation

This IOCTL is sent from the class driver when a user has indirectly opened the port driver

through IRCLASS. This IOCTL is informational only, allowing the port to do any initialization or

bookkeeping required to handle requests not directly originating from IRCLASS.

Input

None.

Output

None.

I/O Status Block

The Information field is set to zero.

The Status field is set to STATUS_SUCCESS.

For more information, see IOCTL_IR_USER_CLOSE.

IOCTL_IR_SET_WAKE_PATTERN (Version 2 Only)

User Scenario

No user scenario. Thedevice is being configured to wake on a specific IR pattern. This may

happen during driver initialization or in response to a specific user key press.

Operation

This IOCTL is sent from IRCLASS to program the hardware to respond to a new wake pattern.

The port driver should program the hardware to respond to this wake pattern. The port driver

should not complete this IRP until it is done programming the hardware. A delay in completing

this IRP may cause a delay in perceived system-shutdown time.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

159

Input

Irp->AssociatedIrp.SystemBuffer points to an IR_SET_WAKE_PATTERN_PARAMS structure,

describing the wake pattern that the hardware should respond to.

Output

None.

I/O Status Block

The Status field is set to STATUS_SUCCESS if the operation is completed successfully. It may

also be one of the following values:

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 160

Data Structure Definitions

The following section defines all of the data structures used by the CIRClass and CIR Port

drivers in their IOCTL communications.

STATUS_BUFFER_TOO_SMALL: The supplied input buffer is too small to contain an

IR_SET_WAKE_PATTERN_PARAMS structure.

STATUS_NOT_SUPPORTED: The hardware does not support programmable wake, or the

hardware does not support the specified protocol or button code.

IR_ENTER_PRIORITY_RECEIVE_PARAMS

The IR_ENTER_PRIORITY_RECEIVE_MODE_PARAMS structure is used in conjunction with

the IOCTL_IR_ENTER_ PRIORITY_RECEIVE IOCTL to put the device into Priority Receive

mode.

Syntax

typedef struct _IOCTL_IR_ENTER_PRIORITY_RECEIVE_PARAMS {

 IN ULONG_PTR Receiver;

 IN ULONG_PTR TimeOut;

}IOCTL_IR_ENTER_PRIORITY_RECEIVE_PARAMS, *PIOCTL_IR_ENTER_PRIORITY_RECEIVE_PARAMS;

Members

Receiver

Index of the receiver to use.

TimeOut

Timeout value, in milliseconds. Used to define the end of a sample.

Headers

For more information, see IOCTL_IR_ENTER_PRIORITY_RECEIVE.

IR_DEV_CAPS

The IR_DEV_CAPS structure is used in conjunction with the IOCTL_IR_GET_DEV_CAPS

IOCTL to retrieve capability information of the device. The IR_DEV_CAPS structure is used by

the version 1 DDI and is also known as the IR_DEV_CAPS_V1 structure. Port drivers written to

the version 2 DDI should use the IR_DEV_CAPS_V2 structure if enough buffer is presented by

the class driver. See IOCTL_IR_GET_DEV_CAPS for more information.

Syntax

typedef struct _IR_DEV_CAPS {

 OUT ULONG_PTR ProtocolVersion;

 OUT ULONG_PTR NumTransmitPorts;

 OUT ULONG_PTR NumReceivePorts;

 OUT ULONG_PTR LearningReceiverMask;

 OUT ULONG_PTR DevCapsFlags;

}IR_DEV_CAPS, *PIR_DEV_CAPS;

Members

ProtocolVersion

Protocol version. If using this structure, this must be DEV_CAPS_PROTOCOL_VERSION_V1

(0x100).

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

161

NumTransmitPorts

Number of transmit ports: 0-32.

NumReceivePorts

Number of receive ports: 0-2 Typically, this number will either be 1 (for a receive only device with

a long-range receiver) or 2 (for a transmit/receive device with a long-range receiver and a wide-

band receiver).

LearningReceiverMask

Bitmask identifying which receivers are learning receivers.

DevCapsFlags

A combination of one or more of the following values:

 DEV_CAPS_HAS_UNIQUE_SERIAL: Unused

 DEV_CAPS_CAN_FLASH_RECEIVER_LED: Device supports the

IOCTL_IR_FLASH_RECEIVER IRP

Headers

For more information, see IOCTL_IR_GET_DEV_CAPS.

IR_DEV_CAPS_V1

Alias for IR_DEV_CAPS. See IR_DEV_CAPS.

IR_DEV_CAPS_V2 (Version 2 Only)

The IR_DEV_CAPS_V2 structure is used in conjunction with the IOCTL_IR_GET_DEV_CAPS

IOCTL to retrieve capability information of the device. Port drivers written to the version 2 DDI

should use the IR_DEV_CAPS_V2 structure if enough buffer is presented by the class driver. If

the class driver does not provide enough buffer for an IR_DEV_CAPS_V2 structure, the port

driver should treat the buffer as an IR_DEV_CAPS structure and fill it in accordingly. See

IOCTL_IR_GET_DEV_CAPS for more information.

Syntax

typedef struct _IR_DEV_CAPS_V2 {

 OUT ULONG_PTR ProtocolVersion;

 OUT ULONG_PTR NumTransmitPorts;

 OUT ULONG_PTR NumReceivePorts;

 OUT ULONG_PTR LearningReceiverMask;

 OUT ULONG_PTR DevCapsFlags;

 OUT ULONG_PTR WakeProtocols;

 OUT WCHAR TunerPnpId[MAXIMUM_FILENAME_LENGTH] ;

}IR_DEV_CAPS_V2, *PIR_DEV_CAPS_V2;

Members

ProtocolVersion

Protocol version. If using this structure, must be DEV_CAPS_PROTOCOL_VERSION_V2

(0x200).

NumTransmitPorts

Number of transmit ports: 0-32.

NumReceivePorts

Number of receive ports: 0-2 This number includes long-range receivers and learning receivers.

Will typically be 0, 1, or 2, depending on the number of receivers present on the device.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 162

LearningReceiverMask

Bitmask identifying which receivers are learning receivers. Set to zero (0) if no learning receivers

are on the device.

Flags

A combination of one or more of the following values:

 DEV_CAPS_HAS_UNIQUE_SERIAL: Unused.

 DEV_CAPS_CAN_FLASH_RECEIVER_LED: Device supports the

IOCTL_IR_FLASH_RECEIVER IRP.

 V2_DEV_CAPS_SUPPORTS_WAKE: Device supports wake from sleep.

 V2_DEV_CAPS_MULTIPLE_WAKE: Device supports all wake from all keys simultaneously.

 V2_DEV_CAPS_PROGRAMMABLE_WAKE: Device supports wake pattern programming to

set the wake button code.

 V2_DEV_CAPS_VOLATILE_WAKE_PATTERN: Wake pattern programming is stored in

volatile storage. The device must refresh the wake pattern on each re-initialization. For

example, this bit would be set if the wake pattern is stored in RAM and clear if the wake

pattern is stored in flash memory.

 V2_DEV_CAPS_LEARNING_ONLY: The device supports IR learning, but not IR input, and

not parse-and-match (no long-range receiver).

 V2_DEV_CAPS_NARROW_BPF: Long-range receiver on the device has a narrow band pass

filter (BPF), so parse-and-match operation is not possible with this device.

 V2_DEV_CAPS_NO_SWDECODE_INPUT: The device is not meant as an IR input device. IR

input into this device should not generate keystrokes for the user application.

 V2_DEV_CAPS_HWDECODE_INPUT: The device has additional ―hardware decoded‖ IR-

input functionality. This would be set, for instance, if the device was a composite device that

also supports input using a hardware-decoded, non-standard IR protocol.

 V2_DEV_CAPS_ATTACHED_TO_TUNER: The device is attached to a tuner. This would be

set for IR receivers/blasters that are integrated into a USB or PCI tuner module.

WakeProtocols

A list of wake protocols that this hardware supports. A combination of one or more of the

following values:

 V2_WAKE_PROTOCOL_RC6: The device supports wake from RC6 protocol.

 V2_WAKE_PROTOCOL_QP: The device supports wake from Quatro Pulse protocol.

TunerPnpId

If this device is attached to a tuner, and the driver knows the PNP ID of the tuner, this field should

contain the PNP ID of the tuner.

Headers

For more information, see IOCTL_IR_GET_DEV_CAPS.

IR_PRIORITY_RECEIVE_PARAMS

The IR_PRIORITY_RECEIVE_PARAMS structure is used in conjunction with the

IOCTL_IR_PRIORITY_RECEIVE IOCTL to read IR data from a device.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

163

Syntax

typedef struct _IR_PRIORITY_RECEIVE_PARAMS {

 OUT ULONG_PTR DataEnd;

 IN ULONG_PTR ByteCount;

 OUT ULONG_PTR CarrierFrequency;

 IN LONG Data[1];

}IR_PRIORITY_RECEIVE_PARAMS, *PIR_PRIORITY_RECEIVE_PARAMS;

Members

DataEnd

Set by port driver to TRUE if a DataEnd (Timeout) event occurred. Otherwise, FALSE.

ByteCount

Set by caller to indicate the number of bytes in the variable length Data[] portion. When

completing the IRP, the port driver sets this to the number of bytes that were filled in by the port

driver.

CarrierFrequency

Set by port driver to indicate carrier frequency of IR sample (if available).

Data

First byte in the ByteCount data buffer.

Headers

For more information, see IOCTL_IR_PRIORITY_RECEIVE.

IR_RECEIVE_PARAMS

The IR_RECEIVE_PARAMS structure is used in conjunction with the IOCTL_IR_RECEIVE

IOCTL to read RLC IR data from a device.

Syntax

typedef struct _IR_RECEIVE_PARAMS {

 OUT ULONG_PTR DataEnd;

 IN ULONG_PTR ByteCount;

 OUT LONG Data[1];

}IR_RECEIVE_PARAMS, *PIR_RECEIVE_PARAMS;

Members

DataEnd

Upon completion of the IOCTL, indicates whether or not this data buffer was completed because

of an IR timeout, or "data end", Set to TRUE if it was completed because of a timeout, FALSE

otherwise.

ByteCount

Set by caller to indicate the number of bytes in the variable length Data[] portion.

Data

First byte in the ByteCount data buffer.

Headers

For more information, see IOCTL_IR_RECEIVE.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 164

IR_SET_WAKE_PATTERN_PARAMS (Version 2 Only)

The IR_SET_WAKE_PATTERN_PARAMS structure is used in conjunction with the

IOCTL_IR_SET_WAKE_PATTERN IOCTL to program the device to wake on a specific IR

pattern.

Syntax

typedef struct _IOCTL_IR_SET_WAKE_PATTERN_PARAMS {

 IN ULONG Protocol;

 IN ULONG Payload;

 IN ULONG Address;

} IR_SET_WAKE_PATTERN_PARAMS, *PIR_SET_WAKE_PATTERN_PARAMS;

Members

Protocol

Protocol of the Wake button. Set to one of the following values:

 V2_WAKE_PROTOCOL_RC6: The Wake button uses the RC6 protocol.

 V2_WAKE_PROTOCOL_QP: The Wake button uses the Quatro Pulse protocol.

Payload

Button code for the Wake button. Set to one of the following values:

 WAKE_KEY_POWER_TOGGLE: The wake on the Sleep toggle button.

 WAKE_KEY_DISCRETE_ON: The wake on the Discrete On button.

Address

The remote control address to wake on.

Headers

For more information, see IOCTL_IR_SET_WAKE_PATTERN.

IR_TRANSMIT_PARAMS

The IR_TRANSMIT_PARAMS structure is used in conjunction with the IOCTL_IR_TRANSMIT

IOCTL and IR_TRANSMIT_CHUNK structure to blast IR data. It describes the device

parameters to use for the blasting.

Syntax

typedef struct _IR_TRANSMIT_PARAMS {

 IN ULONG_PTR TransmitPortMask;

 IN ULONG_PTR CarrierPeriod;

 IN ULONG_PTR Flags;

 IN ULONG_PTR PulseSize;

} IR_TRANSMIT_PARAMS, *PIR_TRANSMIT_PARAMS;

Members

TransmitPortMask

Bitmask containing ports to transmit on.

CarrierPeriod

Carrier period to use.

Flags

Currently unused.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

165

PulseSize

Currently unused.

Headers

For more information, see IOCTL_IR_TRANSMIT and IR_TRANSMIT_CHUNK.

IR_TRANSMIT_CHUNK

The IR_TRANSMIT_CHUNK structure is used in conjunction with the IOCTL_IR_TRANSMIT

IOCTL and IR_TRANSMIT_PARAMS structure to blast IR data. It describes the IR data to be

blasted by the device:

Syntax

typedef struct _IR_TRANSMIT_CHUNK {

 ULONG_PTR OffsetToNextChunk;

 ULONG_PTR RepeatCount;

 ULONG_PTR ByteCount;

 LONG Data[1];

} IR_TRANSMIT_CHUNK, *PIR_TRANSMIT_CHUNK;

Members

OffsetToNextChunk

Offset, in bytes, from Data member of this buffer to next IR_TRANSMIT_CHUNK (or zero if no

more chunks in buffer.)

RepeatCount

Number of times to serially repeat ByteCount bytes of data.

ByteCount

Number of data bytes contained in Data[].

Data

First byte of ByteCount bytes of data.

Note Each chunk is filled to integral ULONG_PTR boundary.

Headers

For more information, see IOCTL_IR_TRANSMIT and IR_TRANSMIT_PARAMS.

HID Device Requirements

The Windows Media Center user interface is designed to be used with a remote control by a user

who is sitting up to five meters away from a computer running a Windows operating system. The

remote control receiver is used to process commands that control and navigate the Windows

Media Center user interface.

In Microsoft Windows® XP Media Center Edition, the only supported remote control

implementation is an infrared (IR) device that is based on reference designs provided by

Microsoft. In an effort to give IHVs and OEMs more options for building remote control solutions,

Microsoft is providing these additional specifications for delivering Human Interface Device

(HID)–based remote control receivers (input only) that will work with Windows Media Center.

Using these specifications, any medium can be used to create HID–based PC remote control

receivers (for example, IR, RF, and so on). The considerations and restrictions for IR devices are

described in this section.

If you need to build a transmit/receive device, you must build a legacy device, a port driver

device, or an emulator device.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 166

HID Remote Control Receiver Requirements

This section contains requirements for remote control receivers, system-level interaction, and

triple-tap input.

Remote Control Receiver (Input Only)

The following list provides remote control and long-range receiver requirements.

 The receiver will decode input from a matching remote control device in the hardware and issue

Human Interface Device (HID) usage reports based on the HID usage code table in "HID Table,"

later in this document.

 The receiver must resume from standby mode using the Sleep button for the particular IR

protocol for which the hardware is optimized. Resume-from-standby must do hardware decoding

of the protocol and operate when the Windows Media Center computer is in a state of lower

power consumption.

 The receiver must wake from S1 or S3. Resuming or waking from S4 or S5 is optional.

 The receiver must properly indicate user presence to the operating system when waking the

system. This can be tested by first waking the system with the remote control, and then by

running a scheduled task. The monitor should turn on when waking with the remote control, but

not when waking from running a scheduled task.

 If using a USB device, it is recommended that the device be able to operate correctly when it is

plugged into a passive hub.

Handling Numeric Input from a Remote Control

When using a remote control to enter numbers and text in Windows XP Media Center Edition, or

Windows Media Center in Windows Vista, users must be able to ―triple-tap‖ letters. For example,

a user can type a song title by pressing the ―2‖ key once to get an A, twice to get a B, and three

times to get a C. This functionality is called triple-tap because a user taps a key as many as three

times (and sometimes more).

In Windows 7 the ―triple tap‖ is replaced by an onscreen keyboard. In order for numeric entry to

work worldwide, the same registry entry below needs to be implemented.

To enable triple-tap input and accurate worldwide numeric input from a remote control in

Windows Media Center text fields, the receiver must be registered in the Windows registry as a

supported Windows Media Center remote control. When the receiver is properly registered,

Windows Media Center processes input correctly.

The key must be set on any consumer system that uses the receiver, either by having OEMs

apply the key to their image or by providing an end-user setup on a CD-ROM. The following

example illustrates the registry key to be set.

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Media Center\Remote Controls]

"HID\\VID_045E&PID_006D "=""

In this example, the VID value is 045E and the PID value is 006D.

Notes The VID and PID values in this registry key are for your specific receiver. Each different

receiver model should have its own VID and PID values.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

167

The registry key string (HID\\VID_xxxx&PID_xxxx "="") is the Plug and Play (PNP) ID for your

specific device. If your device is not based on the USB bus, then the PNP ID will likely be in a

different format.

On 64bit versions of the operating system, you must also add this registry key to

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Med

ia Center\Remote Controls], otherwise your device may produce multiple input events for 32-bit

extensibility apps running on the 64-bit OS.

IR Receiver Considerations

All Windows Media Center IR receivers (input only) must be certified to meet the Windows

Hardware Logo Program Hardware Logo Program requirements.

IR receivers (input only) that use hardware decoding must prevent input duplication and conflicts

with other Windows Media Center IR receiver devices. To avoid such conflicts, IR receivers that

use hardware decoding are prohibited from using Microsoft-reserved IR protocols.

HID Usage Codes

This section contains information about support for Human Interface Device (HID) usage codes.

Future Considerations

Microsoft will continue to evaluate the use of new HID usage code standards as they are made

available from the USB Implementers‘ Forum. Over time, future versions of the Windows Media

Center operating system will implement the use of these standardized HID pages in place of the

current vendor-specific HID page 0xFFBC. Windows Media Center specifications will be updated

to reflect these changes as soon as they are established. Windows Media Center will maintain

support for current HID usage codes for backward compatibility, but reserves the right to phase

them out in future versions of Windows Media Center.

Blu-ray HID Usage Codes Support

Currently there is no specific remote control support for Blu-ray controls. Future versions of

Windows Media Center may contain support and documentation for using the enhanced

functionality of these technologies by using a remote control.

HID Descriptor

The following is the Recommended HID Report Descriptor used for producing HID events.

 \ ; Consumer Controls

 0x05, 0x0c, \ ; Usage Page (Consumer Controls),

 0x09, 0x01, \ ; Usage (Consumer Control),

 0xA1, 0x01, \ ; Collection (Application),

 0x85, 0x01, \ ; Report Id (1)

 0x19, 0x00, \ ; Usage Minimum (0),

 0x2a, 0x3c, 0x02, \ ; Usage Maximum (23c)

 0x15, 0x00, \ ; Logical Minimum (0),

 0x26, 0x3c, 0x02, \ ; Logical Maximum (23c)

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 168

 0x95, 0x01, \ ; Report Count (1),

 0x75, 0x10, \ ; Report Size (16),

 0x81, 0x00, \ ; Input (Data, Array),

 0xC0, \ ; End Collection

 \ ; MS Vendor controls

 0x06, 0xbc, 0xff, \ ; Usage Page (Vendor 0xffbc),

 0x09, 0x88, \ ; Usage (88),

 0xa1, 0x01, \ ; Collection (Application),

 0x85, 0x02, \ ; Report Id (2)

 0x19, 0x01, \ ; Usage Minimum (0x01),

 0x29, 0xff, \ ; Usage Maximum (0xff),

 0x15, 0x00, \ ; Logical Minimum (0),

 0x25, 0x01, \ ; Logical Maximum(1),

 0x95, 0x01, \ ; Report Count (1),

 0x75, 0x08, \ ; Report Size (8),

 0x81, 0x00, \ ; Input (Data, Array),

 0xc0, \ ; End Collection

 \ ; Standby button

 0x05, 0x01, \ ; Usage Page (Generic Desktop),

 0x09, 0x80, \ ; Usage (System Control),

 0xa1, 0x01, \ ; Collection (Application),

 0x85, 0x03, \ ; Report Id (3)

 0x19, 0x81, \ ; Usage Minimum (0x81),

 0x29, 0x83, \ ; Usage Maximum (0x83),

 0x25, 0x01, \ ; Logical Maximum(1),

 0x75, 0x01, \ ; Report Size (1),

 0x95, 0x03, \ ; Report Count (3),

 0x81, 0x02, \ ; Input

 0x75, 0x01, \ ; Report Size (1),

 0x95, 0x05, \ ; Report Count (5),

 0x81, 0x01, \ ; Input (Constant),

 0xC0, \ ; End Collection

 \ ; Keyboard

 0x05, 0x01, \ ; Usage Page (Generic Desktop),

 0x09, 0x06, \ ; Usage (Keyboard),

 0xA1, 0x01, \ ; Collection (Application),

 0x85, 0x04, \ ; Report Id (4)

 0x05, 0x07, \ ; usage page key codes

 0x19, 0xe0, \ ; usage min left control

 0x29, 0xe8, \ ; usage max keyboard right gui

 0x75, 0x01, \ ; report size 1

 0x95, 0x08, \ ; report count 8

 0x81, 0x02, \ ; input (Variable)

 0x19, 0x00, \ ; usage min 0

 0x29, 0x90, \ ; usage max 91

 0x26, 0xff, 0x00, \ ; logical max 0xff

 0x75, 0x08, \ ; report size 8

 0x95, 0x01, \ ; report count 1

 0x81, 0x00, \ ; Input (Data, Array),

 0xC0 \ ; End Collection

HID Table

The following table describes the remote control HID usages that Windows Media Center will

respond to. Remote controls that are used to control Windows Media Center must meet the

Microsoft remote control specifications.

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

169

Button

Grouping

Name HID

TLC

Page

HID

TLC

Usage

HID

Button

Page

HID

Button

Usage

Navigation Green Start Button 0xFFBC 0x88 0xFFBC 0x0D

Navigation Back 0x0C 0x01 0x0C 0x0224

Navigation More Info 0x0C 0x01 0x0C 0x0209

Navigation Up 0x01 0x06 0x07 0x52

Navigation Down 0x01 0x06 0x07 0x51

Navigation Left 0x01 0x06 0x07 0x50

Navigation Right 0x01 0x06 0x07 0x4F

Navigation OK 0x01 0x06 0x07 0x28

Transport Play 0x0C 0x01 0x0C 0xB0

Transport Pause 0x0C 0x01 0x0C 0xB1

Transport Play/Pause Combo 0x0C 0x01 0x0C 0xCD

Transport Stop 0x0C 0x01 0x0C 0xB7

Transport Record 0x0C 0x01 0x0C 0xB2

Transport Fast Forward 0x0C 0x01 0x0C 0xB3

Transport Rewind 0x0C 0x01 0x0C 0xB4

Transport Skip Forward 0x0C 0x01 0x0C 0xB5

Transport Skip Back 0x0C 0x01 0x0C 0xB6

AV Control Power Volume Up 0x0C 0x01 0x0C 0xE9

AV Control Power Volume Down 0x0C 0x01 0x0C 0xEA

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 170

Button

Grouping

Name HID

TLC

Page

HID

TLC

Usage

HID

Button

Page

HID

Button

Usage

AV Control Power Mute 0x0C 0x01 0x0C 0xE2

AV Control Power Closed Captioning 0xFFBC 0x88 0xFFBC 0x2B

AV Control Power Chan/Page Up 0x0C 0x01 0x0C 0x9C

AV Control Power Chan/Page Down 0x0C 0x01 0x0C 0c9D

AV Control Power Sleep toggle (standby) 0x01 0x80 0x01 0x82

AV Control Power Wake 0x01 0x80 0x01 0x83

AV Control Power Sleep 0x01 0x80 0x01 0x82

Numeric Keypad 0 0x01 0x06 0x07 0x27

Numeric Keypad 1 0x01 0x06 0x07 0x1E

Numeric Keypad 2 0x01 0x06 0x07 0x1F

Numeric Keypad 3 0x01 0x06 0x07 0x20

Numeric Keypad 4 0x01 0x06 0x07 0x21

Numeric Keypad 5 0x01 0x06 0x07 0x22

Numeric Keypad 6 0x01 0x06 0x07 0x23

Numeric Keypad 7 0x01 0x06 0x07 0x24

Numeric Keypad 8 0x01 0x06 0x07 0x25

Numeric Keypad 9 0x01 0x06 0x07 0x26

Numeric Keypad Clear 0x01 0x06 0x07 0x29

Numeric Keypad Enter 0x01 0x06 0x07 0x28

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

171

Button

Grouping

Name HID

TLC

Page

HID

TLC

Usage

HID

Button

Page

HID

Button

Usage

Numeric Keypad ‗#‘ 0x01 0x06 0x07 0x20 + 0xE1

Numeric Keypad ‗*‘ 0x01 0x06 0x07 0x25 + 0xE1

Teletext/ISDB-T ―d‖ button Teletext/‖d‖ On/Off 0xFFBC 0x88 0xFFBC 0x5A

Teletext Teletext Red 0xFFBC 0x88 0xFFBC 0x5B

Teletext Teletext Green 0xFFBC 0x88 0xFFBC 0x5C

Teletext Teletext Yellow 0xFFBC 0x88 0xFFBC 0x5D

Teletext Teletext Blue 0xFFBC 0x88 0xFFBC 0x5E

Windows Media Center
Shortcuts

Guide 0x0C 0x01 0x0C 0x8D

Windows Media Center
Shortcuts

Live TV 0xFFBC 0x88 0xFFBC 0x25

Windows Media Center
Shortcuts

Music 0xFFBC 0x88 0xFFBC 0x47

Windows Media Center
Shortcuts

Recorded TV 0xFFBC 0x88 0xFFBC 0x48

Windows Media Center
Shortcuts

Pictures 0xFFBC 0x88 0xFFBC 0x49

Windows Media Center
Shortcuts

Videos 0xFFBC 0x88 0xFFBC 0x4A

Windows Media Center
Shortcuts

FM Radio 0xFFBC 0x88 0xFFBC 0x50

Windows Media Center
Shortcuts

Extras 0xFFBC 0x88 0xFFBC 0x3C

Windows Media Center
Shortcuts

Extras App 0xFFBC 0x88 0xFFBC 0x3D

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 172

Button

Grouping

Name HID

TLC

Page

HID

TLC

Usage

HID

Button

Page

HID

Button

Usage

DVD DVD Menu 0xFFBC 0x88 0xFFBC 0x24

DVD DVD Angle 0xFFBC 0x88 0xFFBC 0x4B

DVD DVD Audio 0xFFBC 0x88 0xFFBC 0x4C

DVD DVD Subtitle 0xFFBC 0x88 0xFFBC 0x4D

DVD Eject 0xFFBC 0x88 0xFFBC 0x28

DVD DVD Top Menu 0xFFBC 0x88 0xFFBC 0x43

Extensibility Ext0 0xFFBC 0x88 0xFFBC 0x32

Extensibility Ext1 0xFFBC 0x88 0xFFBC 0x33

Extensibility Ext2 0xFFBC 0x88 0xFFBC 0x34

Extensibility Ext3 0xFFBC 0x88 0xFFBC 0x35

Extensibility Ext4 0xFFBC 0x88 0xFFBC 0x36

Extensibility Ext5 0xFFBC 0x88 0xFFBC 0x37

Extensibility Ext6 0xFFBC 0x88 0xFFBC 0x38

Extensibility Ext7 0xFFBC 0x88 0xFFBC 0x39

Extensibility Ext8 0xFFBC 0x88 0xFFBC 0x3A

Extensibility Ext9 0xFFBC 0x88 0xFFBC 0x80

Extensibility Ext10 0xFFBC 0x88 0xFFBC 0x81

Extensibility Ext11 0xFFBC 0x88 0xFFBC 0x6F

Other Print 0x0C 0x01 0x0C 0x0208

Remote Control and Receiver-Transceiver Specifications and Requirements
for Windows Media Center in Windows Operating Systems

173

Button

Grouping

Name HID

TLC

Page

HID

TLC

Usage

HID

Button

Page

HID

Button

Usage

Other Zoom 0xFFBC 0x88 0xFFBC 0x27

Other Channel Input (3 Digit
Input)

0xFFBC 0x88 0xFFBC 0x42

Other Sub Audio 0xFFBC 0x88 0xFFBC 0x2D

Other 10 0xFFBC 0x88 0xFFBC 0x3E

Other 11 0xFFBC 0x88 0xFFBC 0x3F

Other 12 0xFFBC 0x88 0xFFBC 0x40

Reserved Button Codes

The following table shows the reserved buttons and corresponding button codes that are defined

now to allocate space in the button map and IR stack for use in the future. At this time,

functionality for the buttons in this class is not implemented in Windows Media Center. These

functions might be implemented in future releases.

No specifications are available that describe Microsoft's intended use of these buttons. Future

uses of these buttons by Microsoft might be incompatible with any implementations that are

generated before the intended uses are specified.

 Remote Control and Receiver-Transceiver Specifications and Requirements
 for Windows Media Center in Windows Operating Systems

 174

Button

Grouping

Name HID

TLC

Page

HID

TLC

Usage

HID

Button

Page

HID

Button

Usage

Reserved Display 0xFFBC 0x88 0xFFBC 0x4F

Reserved Kiosk 0xFFBC 0x88 0xFFBC 0x6A

Reserved Network Selection 0xFFBC 0x88 0xFFBC 0x2C

Reserved BD Tool 0xFFBC 0x88 0xFFBC 0x78

Reserved Channel Information 0xFFBC 0x88 0xFFBC 0x41

