
Skin Expressions

Was this page helpful?

• We have highlighted your search term skin expressions for you. If you'd like to
remove the search term, click here.

Overview
Skin expressions (functions and properties) provide great flexibility to the skin designer,
but sometimes simple property replacement is not enough. One such case is when you
need to combine a property with a localized string. Skin expressions provide a way to
calculate more complex operations based on skin properties, localizable strings and other.

A skin expression is a construct that allows calculations to be performed on property
values and the result substituted in the releavant skin control tag/attribute. It can be used
(almost) anywhere a property can, e.g. as a label text, a texture filename, etc. It can even
be used within <define> tags to avoid repeating the same expression over and over. It
cannot however be used in visibility conditions.

An expression is any of the following:

• a string literal in single quotes - e.g. 'This is a string literal'
• an integer literal - e.g. 123
• a floating point literal - e.g. 12.34 or even 12. (note the dot at the end)
• a property - e.g #itemcount
• a function call - e.g. string.format(123, #itemcount)

Function calls have the following general syntax:

functionname([expression[,expression[...]]])

Because each argument to a function call is also an expression, it is possible to use
nested function calls as in:

string.format('page {0}/{1}', div(#itemindex, 10), div(#itemcount, 10))

Notice that there are no operators (yet).

To distingush expressions from plain text, an expression has to be enclosed in a #(...)
construct. E.g.

01 <control>
02 <description>Number of Files Label</description>
03 <type>label</type>

http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions

04 <id>1</id>
05 <posX>462</posX>
06 <posY>682</posY>

07
 <label>#selectedindex/#(string.formatcount(#itemcount,
'no items|{0} item|{0} items'))</label>

08 <align>left</align>
09 <textcolor>White</textcolor>
10 font10

11
 <visible>string.equals(#selectedindex)
+string.equals(#itemcount)</visible>

12 <animation effect="fade" time="250">WindowOpen</animation>

13 <animation effect="fade"
time="250">WindowClose</animation>

14 </control>
In the above xml code fragment, only the #(string.formatcount(...)) function call and its
enclosed arguments are expressions, #selectedindex is not. Notice however that the #(...)
construct has to be used only once, and that is where the expression is to be evaluated.
That means that expressions in <define> tags should not be enclosed in #(...).

White-space is ignored but in order to make parsing and caching of expressions faster,
expressions are compared including white-space. If you use some expression multiple
times or in multiple screens make sure you use the same white-space. The following two
will return the same result but if both are used in a skin, two expressions will be cached:

string.format(123,#itemcount)
string.format (123, #itemcount)

To ensure the best performance of your skin, decide on a white-space usage convention
and stick to it.

Functions
MediaPortal comes with a set of core skin functions that can be used in skin xml. Plugin
Developers can provide additional custom functions through their plugins. All functions -
core and custom - are treated equally. The only difference is that core functions are
guaranteed to be present in every MediaPortal installation.

Currently the following core functions, grouped in categories, are supported:

• String
• Conversion
• Math
• Date/Time
• Conditionals / Flow Control
• Boolean

http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#bool
http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#flow
http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#datetime
http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#math
http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#conversion
http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#string

String

String functions let you manipulate strings in several ways. They either take strings as
arguments or return a string as a result (often both). Since skin properties are always
strings and the purpose of skin expressions is usually to construct some text to display or
some filename to use as texture, these functions are the nost commonly used ones.

string.contains(string a, string b)

[Since 1.1]

Returns true if string 'a' contains string 'b'.

string.starts(string a, string b)

[Since 1.1]

Returns true if string 'a' starts with string 'b'.

string.equals(string a, string b)

[Since 1.1]

Returns true if string "a" and "b" are identical. Some notes:

• The compare is case sensitive
• Quotes (") are evaluated as well, so string.equals(a,"b") is completly different from

string.equals(a,b)
• You can use operators like + | & but be carefull with spaces:

• string.equals(a,b) | string.equals(c,d) <<< not working
• string.equals(a,b)|string.equals(c,d) <<< OK

string.format(format string id, arg1, arg2, ...)

[Since 1.2]

Format parameters according to format string or localized string referenced by
format string id.

The format string contains format items in the syntax:

{index[,length][:formatString]}

Elements in square brackets are optional. The following describes each element.

index

The zero-based position in the parameter list of the object to be formatted. If
there is no parameter in the index position, an error is returned

,length

The minimum number of characters in the string representation of the

parameter. If positive, the parameter is right-aligned; if negative, it is left-
aligned.

:formatSpecifier

A standard or custom format string that is supported by the object to be
formatted. Possible values for formatSpecifier are the same as the values
supported by the object's ToString(format) method. If formatSpecifier is not
specified a default format is used.

For more details on the syntax of format string, see the .Net Framework function
String.Format(). Especially useful are Standard and Custom number/date formats.

Examples:

#(string.format('{0}/{1} items', #selectedindex, #itemcount))
#(string.format(100, #selectedindex, #itemcount))

Both will return a string like this: "3/85 items"

(assuming string with id=100 contains the localizable string ''{0}/{1} items')

Some number format examples (assuming $starrating = 4.56 and #votes =
1234567):

#(string.format('{0:f1} ({1:n})', cflt(#starrating), cint(#votes)))

Returns 4.6 (1,234,567) on en-US regional settings but 4,6 (1.234.567) on el-GR.
The standard number formats use the regional settings to determine how to format
the numbers.

#(string.format('{0:0.0} ({1:#,0})', cflt(#starrating), cint(#votes)))

Returns 4.6 (1,234,567) on any regional settings. Regional settings still determine
group and decimal separators but not whether they will be used or not. Also note that
the 0.0 format will output 4.0 if #starrating = 4.

Some date format examples (assuming #date = 17/3/2010):

#(string.format('{0:D})', cdate(#date)))

Returns Wednesday, March 17, 2010 on en-US regional settings but Τετάρτη, 17
Μαρτίου 2010 on el-GR. The standard date formats use the regional settings to
determine how to format the date.

#(string.format('{0:dd/mm/yy})', cdate(#date)))

Returns 17/03/10 on any regional settings.

#(string.format('{0:MMMM d, yyyy})', cdate(#date)))

http://msdn.microsoft.com/en-us/library/system.string.format.aspx

Returns March 17, 2010 on en-US regional settings and Μάρτιος 17, 2010 in el-GR.
Note that the format does not change based on regional settings but the month
names get translated.

In general use standard number/date formats to show the values formatted
according to the user's regional settings. Use custom number/date formats to show
the values formatted the way you want regardless of the user's regional settings.

Also never forget to convert properties to the proper type before formatting. Trying to
format an unconverted (string) property as date, will simply output the property string
unmodified.

string.formatcount(value, multi format)

string.formatcount(value, multi format id)

[Since 1.2]

Format value according to one of three formats depending on whether value is 0, 1
or > 1. The argument multi format (or the localizable string specified by multi format
id) should contain the the formats separated by the | character.

Example:

#(string.formatcount(#itemcount, 'no items|{0} item|{0} items))

If #itemcount is 0 this function will return "no items"

If #itemcount is 1 this function will return "1 item"

If #itemcount is greater than 1 this function will return something like "53 items"

L(Id)

[Since 1.2]

Return the localized string for ID Id. When used alone, it is equivalent to simply using
a string ID. But this function allows you to combine a localizable string with literal text
and properties as in the following example:

<label>#selectedindex/#itemcount #(L(101))</label>

This will display something like "8/53 items" (provided that string with id = 100
contains the localizable string "items")

Note though, that you can achieve the same results using string.format().

string.ltrim(string[, charsToTrim])

[Since 1.2]

Trim whitespace or charsToTrim (if supplied) from the start (left) of the string.

Example:

<label>string.ltrim(#date)</label>
<label>string.ltrim(#date,'A,B,C')</label>

string.rtrim(string[, charsToTrim])

[Since 1.2]

Trim whitespace or charsToTrim (if supplied) from the end (right) of the string.

Example:

<label>string.rtrim(#time)</label>
<label>string.rtrim(#time,'A,M,P')</label>

string.trim(string[, charsToTrim])

[Since 1.2]

Trim whitespace or charsToTrim (if supplied) from both ends of the string.

Example:

<label>string.trim(#time)</label>
<label>string.trim(#time,'1,2,3,4,5,6,7,8,9,0')</label>

Conversion

Back Up

Skin Properties in MediaPortal are always strings. But some functions either require some
other type (integer, date etc.) as parameter, or work differently based on the type of the
parameters passed. In most cases strings are implicitly converted to the required type. But
if the conversion is ambiguous, or result in loss of precision, it cannot be applied implicitly
and you have to explicitly convert to the desired type. At other times the implicit conversion
will choose a type to convert to that is not appropriate for your needs. In these cases you
may choose to explicitly convert to the type you desire. To explicitly convert any value to
some other type, use one of the following functions.

cint(value)

[Since 1.2]

Convert value to integer. If value is not a number, returns an error.

http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#overview

cflt(value)

[Since 1.2]

Convert value to float. If value is not a number, returns an error.

cdate(value)

[Since 1.2]

Convert value to date. If value is not a valid date, reutrns an error.

Math

Back Up

Some times the values returned in properties are not exactly how you want them. You
many need to do some calculations on these values. Although operators are not supported
(yet) you can still do basic math using function syntax.

neg(arg)

[Since 1.2]

Return the negative of arg.

add(arg1, arg2, ...)

[Since 1.2]

Return the sum of all arguments (i.e. arg1+arg2+....argN).

sub(arg1, arg2)

[Since 1.2]

Return the difference arg1 - arg2.

mul(arg1, arg2, ...)

[Since 1.2]

Return the product of all arguments (i.e. arg1 * arg2 * ... * argN).

div(arg1, arg2)

[Since 1.2]

http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#overview

Return the quotient arg1 / arg2. If arg2 is zero, a "division by zero" error will be
returned.

math.round(number[, digits])

[Since 1.2]

Round number to the closest number having digits decimal digits. If digits is not
supplied, 0 is assumed (i.e. round to closest integer).
Note that you can also use negative values for digits to round to multiples of 10, 100
etc.

Examples:

math.round(16.32, 1) returns 16.3

math.round(16.36, 1) returns 16.4

math.round(16.32) returns 16

math.round(16.32, -1) returns 20

math.ceil(number[, digits])

[Since 1.2]

Return the smallest number having digits decimal digits that is greater than or equal
to number. Similar to math.round() but instead of rounding, truncates upwards.

Examples:

math.ceil(16.32, 1) returns 16.4

math.ceil(16.36, 1) returns 16.4

math.floor(number[, digits])

[Since 1.2]

Return the largest number having digits decimal digits that is lesst than or equal to
number. Similar to math.round() but instead of rounding, truncates downwards.

Examples:

math.floor(16.32, 1) returns 16.3

math.floor(16.36, 1) returns 16.3

Date/Time

Back Up

http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#overview

Working with dates is always tricky. You can't treat them as strings, you can't treat them as
numbers. You have to use specialized functions that work on dates. Core functions have
been included to allow adding and subtracting dates and times as well as extracting
date/time parts. There are two basic types used:

• date which is actually date/time. It can hold any date and/or time
• timespan which can hold the difference between two dates/times. It can later be

added/subtracted from any date/time, or specific parts of it extracted.

date.add(interval, number, date)

[Since 1.2]

Add the number of intervals to date and return the resulting date. number can be
positive or negative and in some cases even decimal. The valid values for interval
are:

• d or dd or y or dy or w or dw: Days
• wk or ww: Weeks
• m or mm: Months
• q or qq: Quarters
• yy or yyyy: Years
• h or hh: Hours
• n or nn: Minutes
• s or ss: Seconds
• ms: Milliseconds

date.add(date, timespan)

[Since 1.2]

Add timespan to date and return the resulting date. Timespans represent the
difference between two dates.

date.sub(date1, date2)

[Since 1.2]

Subtract two dates, returning the timespan from date2 to date1.

date.add(date, timespan)

[Since 1.2]

Subtract timespan from date and return the resulting date. Timespans represent the
difference between two dates.

date.extract(interval, date)

date.extract(interval, timespan)

[Since 1.2]

Extract a date part from a date or timespan. Return the number of intervals in date or
timespan. The valid values for interval are:

• d or dd: Day of month (dates) or Days (timespans)
• y or dy: Day of year (only use with dates)
• w or dw: Day of week (only use with dates)
• wk or ww: Week of year (dates) or weeks (timespans)
• m or mm: Month (only use with dates)
• q or qq: Quarter (only use with dates)
• yy or yyyy: Year (only use with dates)
• h or hh: Hours
• n or nn: Minutes
• s or ss: Seconds
• ms: Milliseconds

Example:

1
<label>Recorded #(string.formatcount(date.extract('d',
date.sub(cdate(#date), cdate(#recordeddate))), 'today|yesterday|
{0} days ago'))</label>

depending on #date and #recordeddate, would show:

Recorded today

or

Recorded yesterday

or

Recorded 3 days ago

Conditionals / Flow control

Back Up

You often need to check for certain conditions in your skin and provide a different UI based
on that. Maybe you want to change background based on the time of day, or use an
appropriate greeting text. Conditionals do exactly that, and there are several flavours to
choose from depending on the complexity of the situation.

iif(condition, true part, false part)

http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#overview

[Since 1.2]

If condition is true return true part else return false part. condition can be any
expression returning a boolean result.

Example:

<label>#(iif(not(#ispaused), 'Pause', 'Play'))</label>
<label>#(L(iif(not(#ispaused), 101, 102)))</label>

Will show either Play or Pause depending on the current state (assuming strings with
ids 101 and 102 are 'Pause' and 'Play' respectively)

choose(index, arg1, arg2, ...)

[Since 1.2]

Return the indexth argument. index is 0-based.

Example:

#(choose(date.extract('dw', #date), 'Mon', 'Tue', 'Wed', 'Thu', 'Fri',
'Sat', 'Sun'))

Will return the abbreviated day name.

switch(condition1, value1, condition2, value2, ...)

[Since 1.2]

Return the first value for which the corresponding condition is true.

Example:

1 <define>#hour: date.extract('h', #time)</define>
2 ...

3

<texture>#(switch(and(gte(#hour, 6), lt(hour, 12)), 'back-
morning.png', and(gte(#hour, 12), lt(#hour, 15)), 'back-
noon.png', and(gte(#hour, 15), lt(#hour, 19)), 'back-
evening.png', or(gte(#hour, 19), lt(#hour, 6)), 'back-
night.png'))</texture>

Assuming the texture referred to is that of the background, this will rotate the
background between morning, noon, evening and night based on the time of day.

Boolean

Back Up

Having conditional functions would be of no use, without a way to build as complex
conditions as necessary to suit your needs. Boolean funtions allow you to build such
conditions. There are two types of boolean functions:

• Comparison functions allow you to check for specific values / ranges of values

http://wiki.team-mediaportal.com/1_MEDIAPORTAL_1/18_Contribute/7_Skins/Skin_Architecture/Skin_Logic/Skin_Expressions?highlight=skin+expressions#overview

• Boolean logic functions can be used to combine conditions to build more complex
ones

eq(value1, value2)

[Since 1.2]

Return true if value1 = value2.

neq(value1, value2)

[Since 1.2]

Return true if value1 <> value2.

gt(value1, value2)

[Since 1.2]

Return true if value1 > value2.

gte(value1, value2)

[Since 1.2]

Return true if value1 >= value2.

lt(value1, value2)

[Since 1.2]

Return true if value1 < value2.

lte(value1, value2)

[Since 1.2]

Return true if value1 <= value2.

not(condition)

[Since 1.2]

Return true if condition is false.

and(condition1, condition2, ...)

[Since 1.2]

Return true if all conditions are true.

or(condition1, condition2, ...)

[Since 1.2]

Return true if one condition is true.

	Skin Expressions
	Overview
	Functions
	String
	Conversion
	Math
	Date/Time
	Conditionals / Flow control
	Boolean

